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PICs for Beyond-Moore Era
• Post-Moore or Beyond-Moore ICs require 

integration of novel devices with CMOS: CMOS+X

• Silicon-based Photonic Integrated Circuits (PICs) 

designed using the same CAD tools and 

manufactured using standard 300mm CMOS 

facilities

• ‘Moore’s law’ for PICs

▪ Number of components on a PIC double every ~18 

months 

▪ Large-scale PICs for optical transceivers, optical 

signal processing, and computing

▪ >103 on-chip components

Margalit, N. et al., “Perspective on the future of silicon 

photonics and electronics,” Appl. Phys. Lett. 118, 220501 

(2021).
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Silicon-Based Photonics Integration
• Silicon-on-Insulator (SOI) photonics foundry 

platforms enable large-scale PIC fabrication

• Passive silicon photonic components

▪ Low-loss waveguides, bends, couplers 

▪ Grating and Edge couplers

▪ Thermo-optic phase shifters

• Active silicon photonic components

▪ High-speed pn junctions, modulators (~35GHz BW)

▪ Ge detectors (~40GHz BW)

▪ SiGe Electro-absorption modulators (~50GHz BW)

▪ Heterogeneous integration of III-V lasers and on-

chip optical gain

Adapted from Fahrenkopf et. al., "The AIM Photonics MPW: A Highly Accessible Cutting 

Edge Technology for Rapid Prototyping of Photonic Integrated Circuits," IEEE JTQE, vol 

25, no 5, 2019.

Giewont et. al., “300-mm Monolithic Silicon Photonics Foundry 

Technology,” IEEE Journal of Selected Topics in Quantum Electronics, 

vol. 25, no. 5, pp. 1-11, 2019.
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PIC Application Space

• Transceivers: Data center interconnects, coherent 

long-haul, 5G networks, WDM transceivers

• RF Photonics: Optical filters, flexible RF front-ends, 

RF beamforming

• Programmable Photonics 

• LIDAR, Optical phased arrays, free-space optics

• Sensors: Chem, Bio-sensing, Optical Gyroscope

• Deep Neural Networks, AI

• Optical Quantum Computing
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SOI Phase Shifters
• Thermo-optic phase shifters

▪ Strong temperature dependence, compact, lossless

• Carrier plasma-dispersion effect

• Local refractive index depends on the free carrier 

concentration (1550nm)1

• Voltage controlled phase modulation

• Can use both reversed-biased (depletion mode) or 

forward-bias (injection mode) devices
• MOSCAP-based devices also exist (e.g. SISCAP)

pn

450 nm

300 nm

1μmBuried Oxide

Optical Mode

1R.A. Soref and B.R. Bennett, ”Electrooptical effects in silicon”, JQE-23, pp.123-129, 1987
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Optical Modulation Materials and Mechanisms

S. Shekhar et al., “Roadmapping the next generation of silicon photonics,” Nature Communications 15.1 (2024): 751.
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Mach-Zehnder Modulator Microring Modulator Electro-Absorption (EAM)

Mechanism Interferometric
Plasma dispersion

Resonant (ring or disk)
Plasma dispersion

Franz Keldysh effect (Ge/SiGe)
Absorption

Device Size >3mm pn-junction length Very compact (<10μm radius) Compact (~40μm length)

Driver Type Current-mode or distributed driver Lumped voltage-mode drive Lumped voltage-mode drive

Drive Voltage 2.4Vpp 1.2-4Vpp 2-3Vpp

EO Bandwidth >35 GHz >40 GHz >50 GHz

TX Energy-efficiency (NRZ)
TX Energy-efficiency (PAM4)

2.4†, 2-11 pJ/bit
2.4-13.64* pJ/bit

0.685†, 2-4.5*pJ/bit
0.685†, 5.8*pJ/bit

0.78* pJ/bit
1.5* pJ/bit

TX Design Challenge Quadrature bias control Continuous Resonant wavelength 
control

No tuning required but generates 
large photocurrent

10μm

N

P

H+&H-

Silicon-Based Modulator Devices

†Monolithic Integration, *Hybrid Integration
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SiP-based Optical Interconnects
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SiP Optical Interconnects
• AI and Cloud computing drive the 

demand in data center usage

• SiP is ideal for high-bandwidth, low-cost, 

and long-distance interconnects

• Low-loss fiber channel enables distance-

independent communication

• Data center interconnects evolved from 

demos in year 2007 multi-million units per year

• EIC integrated with PICs

▪ Evolution from separate ICs to monolithic or 3D 

integrated PIC/EICs

CW 

Laser PI

Modulator

TX Driver

PM,o
Po,d

Vpd

PD
SMF

TIA RX

E
le

c
tr
ic

a
l 

In
te

rf
a
c
e

E
le

c
tr
ic

a
l 

In
te

rf
a
c
e

Intel’s 100G CWDM-4 QFSP28 transceiver module



HEP-IC, May 2024 10 © Vishal Saxena

Current-mode TW-MZM Driver

• Silicon MZMs exhibit 𝑉𝜋𝐿𝜋~1.2-2 V∙cm

▪ long (>3mm) pn junctions for Vπ in the CMOS range

▪ Push-pull drive used to half drive voltage

▪ Typically, 2.4-3V drive voltage

▪ Electrical and optical velocities should match; else bandwidth reduces
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Current-Mode MZM Driver
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K. Zhu, V. Saxena, et al, “Design Considerations for Traveling-Wave Modulator 

Based CMOS Photonic Transmitters,” IEEE TCAS-II, vol. 62, no. 4, pp. 412 – 

416, April 2015.
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CMOS Photonic Co-simulation 
PIC Design Flow Compact Models for Photonic Components

Cadence 

Schematic

Verilog-A

Symbol

Editable component 

variables

K. Zhu, Saxena, V., X. Wu, and W. Kuang, “Design Considerations for Traveling-Wave Modulator Based 

CMOS Photonic Transmitters,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 4, 

pp. 412 – 416, April 2015.
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Distributed MZM Driver

Ding, Ran, et al. "100-Gb/s NRZ optical transceiver analog front-end in 130-nm 

SiGe BiCMOS." 2014 Optical Interconnects Conference. IEEE, 2014.
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• Active transmission line

▪ Lower RF loss in electrodes

• Voltage-mode drive

▪ Segments driven as lumped capacitance

• Electrical and optical velocities matched
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Advanced Modulation Transceivers

• IEEE 802.3bs standard included 400 Gb/s (25-

100 Gb/s/λ) for short-range (<100m) 

interconnects

• The 802.3df roadmaps 800 Gb/s and 1.6 Tb/s 

using 112 Gb/s/λ and 224 Gb/s/λ interconnects

• The UCIe chiplet ecosystem requires 

>5Tb/s/mm2 bandwidth density

• Pulse amplitude modulation (PAM-4) doubles 

spectral efficiency

• Coherent links employ phase and/or 

polarization for quadrature amplitude 

modulation (QAM)

NRZ PAM4 

PAM8 PAM16 
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Current-Mode PAM-4 with Segmented MZM

• Equivalent to 2-bit DAC processing signal in optical phase domain 

• PAM4 Linearity is important
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MZM PAM4 Transmitter • IBM 8HP 130nm 
SiGe BiCMOS 

• IME Silicon Photonic 
Process

• Chip-on-board 
packaging

• PLL for on-chip clock 
and data pattern 
generation

PAM-4 Segmented MZM Driver
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CMOS-based Reconfigurable Segmented MZM
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• Segment MZM arms and drive them like lumped elements (voltage-mode drive)

• Individual driver (drvr) selectively powered by control signal pd<#>

• NRZ can be achieved by only enable the LSB or MSB

• Different PAM-4 ER can be achieved by choosing between segment combinations
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Voltage-mode Segmented MZM

• Compared to the traditional AC coupling, the latch-based level shifter has no 

RC time constant constraint.

Push-pull inverter 

based driver



HEP-IC, May 2024 19 © Vishal Saxena

Reconfigurable Segmented MZM

C. Li, K. Yu, J. Rhim, K. Zhu, N. Qi, V. Saxena, M. Fiorentino, and S. Palermo, “A 3D Integrated 56 Gb/s NRZ/PAM4 Reconfigurable Segmented Mach-Zehnder Modulator 
based Si-photonics Transmitter,” in IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2018.
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Reconfigurable Segmented MZM

28Gbps optical NRZ eye diagram (a) MSB driver enable only (b) LSB 

driver enable only. 

56Gbps optical PAM-4 eye diagrams (a) without velocity mismatch 

compensation; (b) with phase interpolator aided compensation; (c) with both PI 

and delay line aided compensation. 

C. Li, K. Yu, J. Rhim, K. Zhu, N. Qi, V. Saxena, M. Fiorentino, and S. Palermo, “A 3D Integrated 56 Gb/s NRZ/PAM4 Reconfigurable Segmented Mach-Zehnder 
Modulator based Si-photonics Transmitter,” in IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2018.
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Resonant Modulators
• Microring Modulators (MRM) & Microdisk 

modulators

• Resonant structure forces several roundtrips for 

the optical signal

▪ More phase shift in a smaller geometry

• 3µm-10µm ring radius 

▪ ~3µm disk diameter

• Quality factor >8,000

• Lumped load cap <100fF 

• Ideal for WDM links and high-density switches

• Resonance wavelength is process and 

temperature sensitive
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MRM NRZ TX Driver
• Voltage-mode drivers 

• 2VDD=2.4V drivers realized using 

stacked CMOS transistors

• N=16 tunable segments 

• 4.4V driver realized using AC coupling

• High-Q rings exhibit unequal rise and fall 

times

▪ Dynamic nonlinearity

▪ Non-linear 2-tap FFE employed to 

equalize the eye

V. Saxena, V., A. Kumar, A., S. Mishra, S. Palermo, and K. R. Lakshmikumar, “Optical Interconnects Using 

Hybrid Integration of CMOS and Silicon-Photonic ICs,” IEEE TCAS II, vol. 71, no. 3, 2023.
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MRM NRZ TX Driver
• MRMs and driver EIC are integrated using

▪ Short wire-bonds

▪ Flip-chip

▪ Monolithic process

• Non-linear 2-tap FFE segment tuned to 

equalize the optical eye

• MRMs are amenable to WDM links

▪ Each ring is tuned to the wavelength grid

▪ A low-speed feedback controller is used to 

lock the MRM to its desired resonant 

wavelength

Hao Li, et al. "A 25 Gb/s, 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength 

stabilization in 65 nm CMOS." IEEE JSSC, vol. 50, no.12, pp. 3145-3159, 2015
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MRM NRZ TX Comparison

• Monolithic integration enables <1pJ/b energy-efficiency

• Serializer consumes most of energy budget

• Higher MRM modulation efficiency allows lower voltage swing and lower power
S. Mishra et al. "A hybrid cmos photonic 25gbps microring transmitter with a-0.5–1.2 v direct-coupled 

drive." 2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2022.
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MRM PAM4 TX Driver
• Single-segment and segmented MRM and 

driver designs

• MRM static nonlinearity causes degradation 

of ratio of level mismatch (RLM)

• MRM dynamic nonlinearity degrades the 

transmitter eye closure quaternary (TDECQ)

• Segmented MRM relaxes the linearity 

requirements

• Recent literature has more complex EQ 

schemes

• V. Saxena, V., A. Kumar, A., S. Mishra, S. Palermo, and K. R. Lakshmikumar, “Optical Interconnects 

Using Hybrid Integration of CMOS and Silicon-Photonic ICs,” IEEE TCAS II, vol. 71, no. 3, 2023.
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MRM PAM4 TX Comparison

J. Sharma , et al. "Silicon photonic microring-based 4× 112 Gb/s WDM transmitter with photocurrent-based 

thermal control in 28-nm CMOS." IEEE JSSC, vol. 57, no. 4, pp. 1187-1198, 2021.

Li, Hao, et al. "A 3-D-integrated silicon photonic microring-based 112-Gb/s PAM-4 transmitter with nonlinear 

equalization and thermal control." IEEE Journal of Solid-State Circuits, vol. 56, no. 1, pp. 19-29., 2020
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Traditional Optical Receivers
• III-V or on-PIC Ge Photo-detectors

▪ >50GHz BW in SiP platforms

• First stage transimpedance amplifier 

(TIA) sets the overall sensitivity and 

linearity

▪ Noise vs TIA bandwidth

• Limiting receivers for NRZ data

• Multistage amplifiers to obtain the 

required voltage swing

• A DC offset cancellation (DCOC) 

loop sets common-mode levels

• Output buffer to drive 50Ω load
K. Zhu and V. Saxena, "Case Study of a Hybrid Optoelectronic Limiting Receiver," 

IEEE TCAS I: Regular Papers 64.10 (2017): 2797-2805.
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Modern Optical Receivers
• SiGe BiCMOS RX are commonly used 

for high baud rates

• Receiver (RX) in advanced CMOS 

nodes allows higher integration and 

lower power

• PAM4 requires a linear RX to preserve 

symbol shape

• 𝑖𝑜 = 𝑖𝑛 − 𝑖𝑝 ≈ 𝑘𝑛𝑉𝑜𝑣,𝑛 − 𝑘𝑝𝑉𝑜𝑣,𝑝 𝑣𝑖 +
𝑘𝑛

2
−

𝑘𝑝

2
𝑣𝑖
2

• In 16nm FinFET, 𝑘𝑝 ≈ 𝑘𝑛, yielding linear 

transconductance

• Shunt-feedback or gm-on-gm linear stages
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K. R. Lakshmikumar et. al., “High-Performance CMOS TIA for Data Center Optical 

Interconnects,” in IEEE BCI-CTS, 2022, pp. 9–16
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Figures courtesy K. Lakshmikumar 
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Modern Optical Receivers

• K. Lakshmikumar et. al., “A 7 pA/√Hz Asymmetric Differential TIA for 100Gbps PAM-4 

links with -14dBm Optical Sensitivity in 16nm CMOS,” in IEEE ISSCC, 2023, pp. 206–

207

• V. Saxena, V., A. Kumar, A., S. Mishra, S. Palermo, and K. R. Lakshmikumar, “Optical 

Interconnects Using Hybrid Integration of CMOS and Silicon-Photonic ICs,” IEEE TCAS 

II: Express Briefs, vol. 71, no. 3, 2023.

Figures courtesy K. Lakshmikumar 
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Evolution of Data Center Optical Interconnects

Margalit, N. et al., “Perspective on the future of silicon photonics 

and electronics,” Appl. Phys. Lett. 118, 220501 (2021).

• Pluggable modules to co-packaged optics (CPO) with the Switch ASIC

• Disaggregated laser supply in earlier generations, now heterogeneously integrated

• Industry is moving towards DSP-based links

▪ DSP and DAC/ADC are integrated in the Switch ASIC

▪ TX drivers and RX need to be linear
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SiP Interconnects for HEP Applications

• Cammarata, S., et al. "Compact silicon photonic Mach-Zehnder modulators for high-

energy physics." Journal of Instrumentation 19.03 (2024): C03009.

• El Nasr-Storey, Sarah Seif, et al. "Silicon photonics for high energy physics data 

transmission applications." 11th International Conference on Group IV Photonics (GFP). 

IEEE, 2014.

• Thousands of VCSEL-based optical data transmission links are used in LHC

▪ Transmission of timing, control, and read-out of HEP detectors

• VCSEL-based links are susceptible to performance degradation at higher radiation

▪ Bulky electrical links are used in extreme radiation zone; limits scaling

• SiP based transceivers are being developed for next generation readout

▪ Can deliver >50Gb/s/lane data rates, higher level of integration, and lower optical fiber count

• Rad-hard MZM designs employ optimized doping levels and compact device footprint
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RF Photonic Signal Processing
Linear EO Modulators
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RF Photonic Signal Processing

• Optical-domain RF signal processing allows very wide bandwidths and tunability over a 

large frequency range

• Widely-tunable RF front-end for software-designed radio (SDR) is a long-standing 

challenge for electronics

• Requires a highly-linear RF-to-optical (EO) modulator for RF modulation of the laser

• Radio-over-fiber analog links
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Modulator Nonlinearity

• MZM presents odd-order nonlinearity (assuming no mismatch between 

arms)

▪ Biased at quadrature point

• Significant nonlinearity limits SFDR below 100dB/Hz2/3

▪ Insufficient for RF photonic or radio-over-fiber applications

• Ring modulator presents even-order as well as odd-order non-linearity
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MZM Linearization Schemes

𝜑 = 𝑓(𝑉)

𝑇𝑜𝑝𝑡,𝑀𝑍 = 𝑠𝑖𝑛
𝜑𝑡𝑜𝑝 − 𝜑𝑏𝑜𝑡

2
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Ring-Assisted Mach-Zehnder Modulator (RAMZM)

• Broadband active linearization of the MZM 

response required 3X bandwidth

• Ring-assisted Mach-Zehnder Interferometer 

(RAMZI)

▪ Overcoupled ring exhibits expansive voltage-to-

phase (V2P) response

▪ MZ combiner has compressive phase-to-intensity 

(P2I) response

▪ The V2P and P2I can be made to compensate 

each other at an optimal coupling (κ)

▪ Higher-linearity with passive RF drive
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Md J. Shawon and V. Saxena. "Automatic In-situ Optical Linearization of

Silicon Photonic Ring-Assisted MZ Modulator for Integrated RF Photonic SoCs," OFC 2023, Feb 2023.
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RAMZM PIC
• Mach Zehnder arms are loaded with ring 

modulators

▪ Differentially driven (push-pull)

• Tunable couplers are realized using 2x2 switch

• 1% and 10% detector taps to assist with chip 

configuration

• Microheaters for bias tuning

▪ Electronic backend for tuning algorithm
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Automatic In-situ Tuning (Anti-resonance)
• Laser is aligned with the anti-resonance

• Automatic tuning algorithm biases the two 

rings in anti-resonance, and the outer MZI in 

quadrature bias

Md J. Shawon and V. Saxena. "Automatic In-situ Optical Linearization of

Silicon Photonic Ring-Assisted MZ Modulator for Integrated RF Photonic SoCs," 2023 Optical Fiber 

Communication Conference (OFC), San Diego, Feb 2023.

Tuning Steps
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RAMZM SFDR (IM3 Products)
• Experimental results demonstrate record 

linearity in silicon photonic modulators

• SFDR with two-tone test around 1GHz 

~110.11dB·Hz2/3

– Over 18dB improvement 

• This was a lumped  design with Kerr 

linearized pn-junction of 1.5mm length

– Bandwidth with 50Ω drive is around 3GHz

• Bandwidth can be extended to 20GHz with a 

linear driver in BiCMOS technology

• Shows promise for Active COB or standalone 

block for RF Photonics

CDR: 35dB

@Fundamental Tone 

power of

-23.46dBm

SFDR 
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Integrated Optical Filters
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Optical Filters in SiP Platform

• SiP Filter Topologies:

▪ FIR filters: Delay line based

▪ IIR filters: Bragg gratings, Ring Based

▪ Lattice structure (2N+1 couplers, 2N phase shifters)

▪ APF (N+2 couplers, N+2 phase shifters)

• APF requires less couplers and phase shifters
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1 S. Ibrahim, et al., “Demonstration of a fast-reconfigurable silicon cmos optical lattice filter,” Optics 

express, vol. 19, no. 14, pp. 13245–13256, 2011.

2 G. Choo, et. al, "Automatic Monitor-Based Tuning of Reconfigurable Silicon Photonic APF-Based 

Pole/Zero Filters," in JLT, vol. 36, no. 10, pp. 1899-1911, 2018
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Automatic Tuning of RF Photonic Filters

• On-chip 1% optical taps serve as observables

• Thermo-optic phase shifters provide controllability

• Configure desired filter response on the fly

• Algorithms to estimate and compensate for thermal crosstalk
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RF Photonic Filter PIC

• Fabricated in AIM Active SiP process

• Automatic in-situ filter reconfiguration

• Developed algorithms to tune optical 

components to achieve the desired filter 

shape and center frequency

• Can tune filter center frequency over 

25GHz FSR and BW

• Min BW~3GHz with 2.2dB insertion loss

Md J. Shawon, and V. Saxena, “Fully Automatic In-Situ Reconfiguration of RF Photonic Filters in a CMOS-

Compatible Silicon Photonic Process,” IEEE J. Lightwave Technology, vol. 41, no. 5, pp. 1286-1297, 2023.
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RF Photonic Filter Tuning 

• The residual thermal crosstalk still creates 

coupling between components

• An iterative algorithm is developed to first 

characterize each coupler

• Use on-chip monitors to center the ring 

center wavelength, coupling coefficients 

and sideband suppression

• Current state-of-the-art is ~300-700 

seconds for filter reconfiguration

▪ Needs to be significantly reduced to a few 

seconds or lower for SDR 

▪ Need to drastically reduce thermal xtalk
Md J. Shawon, and V. Saxena, “Fully Automatic In-Situ Reconfiguration of RF Photonic 

Filters in a CMOS-Compatible Silicon Photonic Process,” to appear in J. Lightwave 

Technology, 2023.

Filter Tuning Process
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Roadmap for LSPICs

• We have pursued large-scale PICs (LSPICs) 

for signal processing and computing

• Encountered and addressed major challenges 

with PIC scaling with the SiP foundry 

processes available now

▪ We demonstrated low-cost packaging 

approaches, electronic interfaces and 

configuration algorithms

• Thermal crosstalk is a primary challenge to 

scaling

▪ Process improvements and new materials can 

help address this challenge Rizzo, Anthony, et al. "Petabit-Scale Silicon Photonic Interconnects With 

Integrated Kerr Frequency Combs." IEEE Journal of Selected Topics in 

Quantum Electronics 29.1: Nonlinear Integrated Photonics (2022): 1-20.
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Conclusion
• Availability of silicon photonic foundry platforms enables fabrication of 

large-scale PICs

• SiP based optical Interconnects continue to evolve and gain market 

share

▪ Application in HEP readout

▪ SiP devices have shown promise in high radiation environment

• Packaging of EICs and PICs requires careful planning 

• LSPICs can address several applications in signal processing and 

computation
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Challenges with PIC Scaling: Thermal Crosstalk
• Thermo-optic is the most effective PIC tuning mechanism 

▪ Doped waveguide or metal heaters create optical 

phase shifts localized heating

• Microheaters crosstalk (xtalk) with other optical 

components through the substrate 

▪ Small amount through the inter-layer dielectric as well

• Thermal crosstalk poses significant difficulty in PIC 

configuration and tuning

• Challenging problem as the NxN Adjacency matrix has 

non-diagonal terms for N tunable components on PIC

• In our PICs, thermal crosstalk is managed by using a 

combination of die thinning and thermal management

Thermal crosstalk from a single heater as a function of 

substrate thickness. A TEC is located at the bottom of 

the substrate1

HeaterWG1 WG2

Thermal xtalk
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