

Superconducting Parametric Amplifier Design

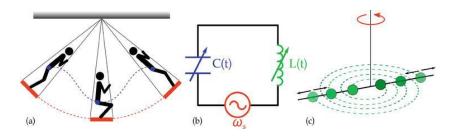
Kyle Woodworth, Chandrashekhar Gaikwad, Davide Braga, Kater Murch, Farah Fahim

Why Parametric Amplifiers

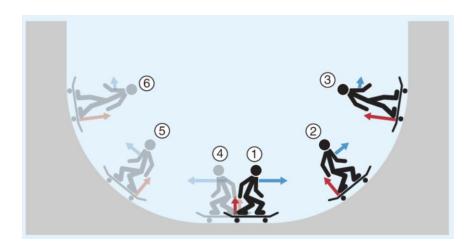
- Experiments in HEP and QIS
- Cryogenic temperature operation
- High Quantum Efficiency
- General Purposed Quantum readout chains

Source: QIS for HEP report arXiv:2311.01930 Quantum Fechnology **NMR** Pairbreaking Clocks / AMO C.V. Coherent **QND Photon** Gap of Aluminum Gap of Silicon Interaction Energy We are here 1 µeV 10 eV 1 meV **Light Dark Matter CMB** Ultralight Dark Matter Opt QCD Axico Dark Matter k_BT = hf in dilution refrigerator Signal Frequency 10⁻⁸ Hz 1 kHz 1 MHz 1 GHz 1 THz SIGNAL CREATION SIGNAL DETECTION Source: A Quantum Engineer's Guide to

Superconducting Qubits arXiv:1904.06560


Parametric Amplifiers At Fermilab

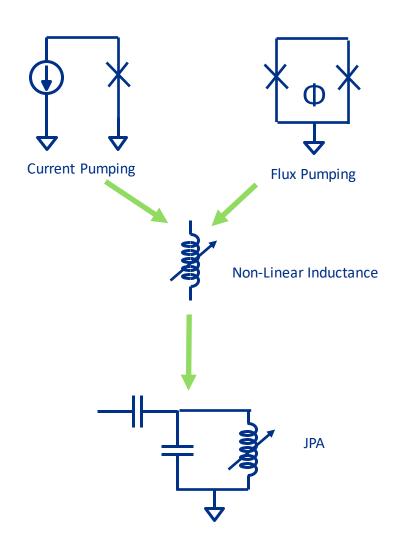
- Tape-out: March of 2023
- Fab: MIT-LL SFQ5ee [100 uA/um^2; 8 Nb Layers]
 - Established and matured superconducting JJ process
 - Repeatable and well controlled for ASIC applications
 - Frequent MPW runs
- Chip Contents
 - 2 JPA experiments
 - 2 JTWPA experiments
 - Test Structures



What is a Parametric Amplifier?

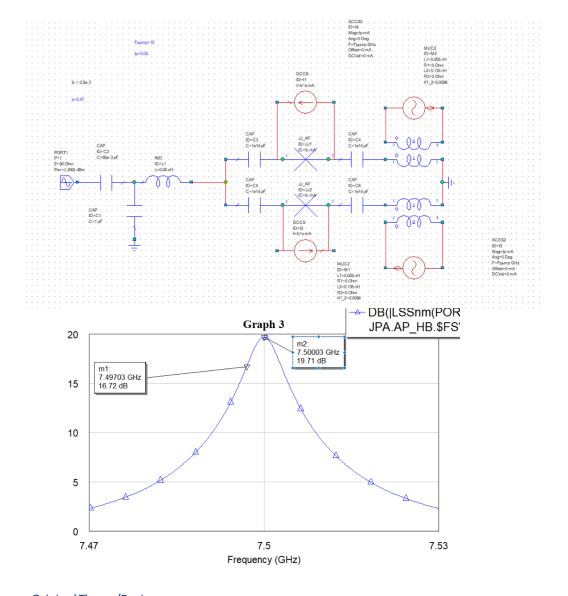
- RF Mixer combined with amplifier
- Parametric refers to the process of modulating a parameter of a system of equations
- Signal tone is mixed with pump tone via non-linearity
- Energy from pump is converted into signal photons
- Akin to being pushed on a swing or skating in a half pipe

Source: Superconducting Josephson-Based Metamaterials for Quantum-Limited Parametric Amplification: A Review



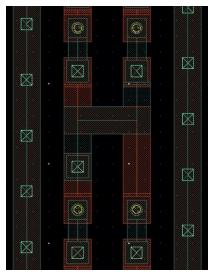
Source: Superconducting Parametric Amplifiers: The State of the Art in Josephson Parametric Amplifiers DOI:10.1109/MMM.2020.2993476

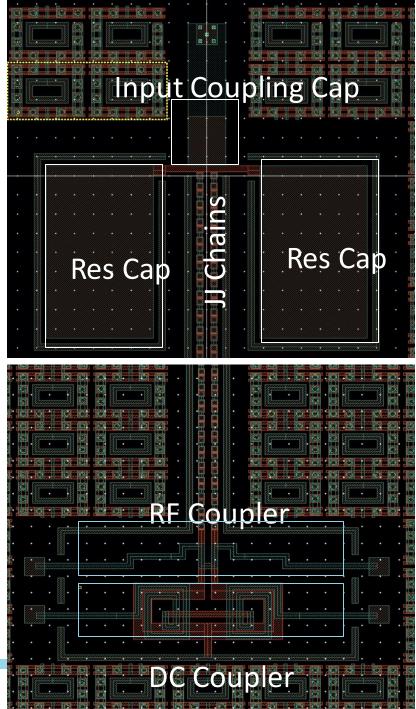
Josephson Parametric Amplifier


- Increasing current through JJ increases the effective inductance
- Single JJ/JJ Chain = Current Pumping via modulation of the Josephson Inductance
- DC SQUID = Flux Pumping via modulation of the effective Ic of the SQUID
- 1 Port System
- Active termination
- Very small bandwidths

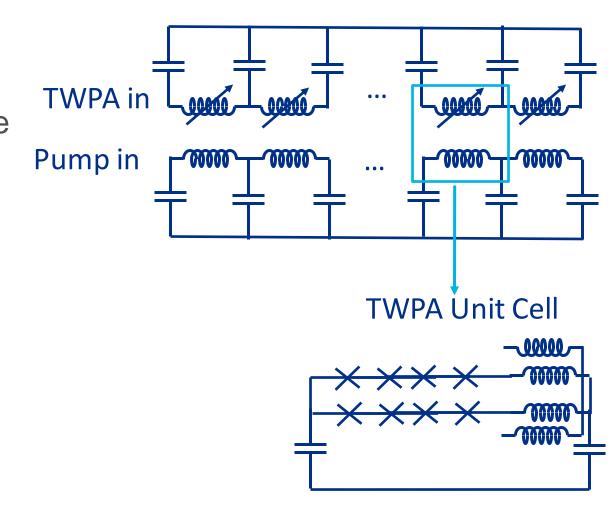
JPA Circuit Simulation

- 2 different versions of JPA
 - Crossed loop (0-effective area)
 - No-crossed loop
- Original design adapted from original work by WashU collaborators
 - ADMX and BREAD
- Specifications
 - Coupling capacitance = 60fF
 - Signal Frequency = 7.5 GHz
 - Pump frequency = 15GHz
 - Pump Amplitude = 40uA
 - Gain = 20dB
 - Bandwidth = 60MHz
 - Tunable Bandwidth = <1GHz

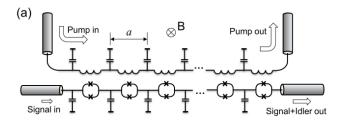


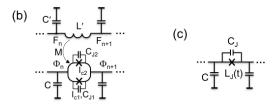

Original Theory/Designs
https://arxiv.org/pdf/0808.1386.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2019/03/epjconf_qtech2018_00008.pdf

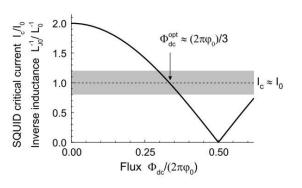
JPA Circuit Layout


- SFQ5ee
- Original work was done with 1 layer
- RF Coupler = 0.5pH
- Minimizing capacitance between RF bias line and SQUID is essential for avoiding current pumping
- DC Coupler = 3pH

What is a TWPA?

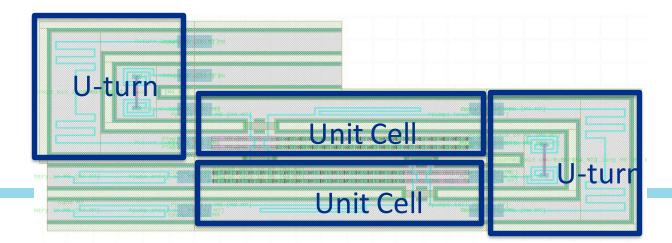

- AKA: JTWPA or Josephson Traveling Wave Parametric Amplifier
- A non-linear transmission line
- Phase matching (L-C's match)
- Current and Flux Pumping
- Much larger instantaneous bandwidth
- Floquet, SNAIL
- Theory first developed by Zorin 2019
- https://arxiv.org/pdf/1804.09109.pdf

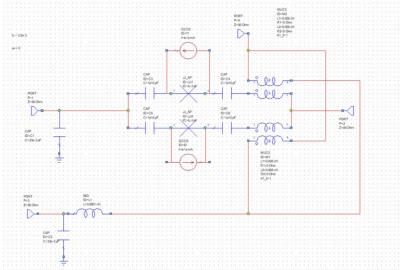


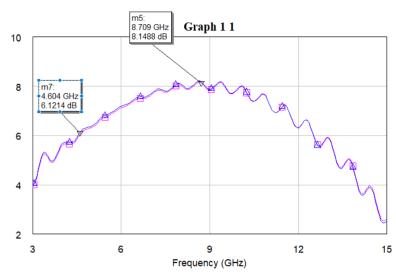


Dispersion Engineering

- Solutions
 - Introducing stop-bands
 - Varying size of JJ's along path
- Two parallel transmission lines
 - Pump Tone
 - Signal Tone
- Optimally bias TWPA for maximum slope of SQUID critical current



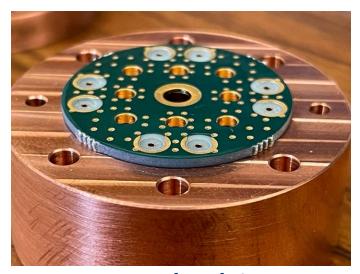

https://arxiv.org/pdf/1804.09109.pdf


JTWPA Circuit Simulation

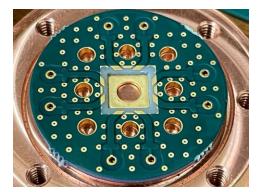
- 400x and 800x unit-cell experiments
- Dispersion/impedance engineering
 - Lumped element pump line matched to operating impedance of TWPA unit cells
- Specifications (400 unit cells)
 - Pump frequency = 20GHz
 - Pump Amplitude = 40uA
 - Gain = 8dB @ 9GHz
 - Bandwidth = 8GHz

Unit-cell Schematic

400 unit-cell Gain Simulation

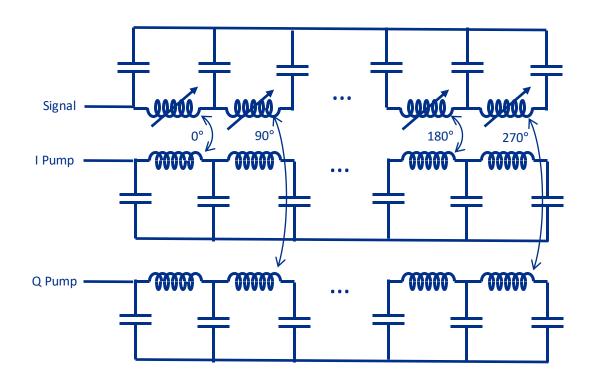


Testing


- Chips delivered December 2023
- Currently working with a group to wirebond, solder, and assemble the testing cavity to a fridge

Left to Right: Bottom Cavity, DC Bobbin, Top Cavity

Bottom face of PCB



Top face of PCB

Future Work

- 1000x and 2000x unit cells
- Mutually coupling RF clock phase as a dispersion matching technique which can increase tunable bandwidth
- Verify against open-sourced simulation tools
- Lower critical current density fabrication
 - Shrinks SQUID loops
 - Reduces the number of junctions required
 - Increases beta

