







## MPGD readout electronics

I. Mandjavidze Irfu, CEA Saclay

Incremental Design and Safety Review of the EIC Tracking Detectors March 20-21, 2024

Electron-Ion Collider





#### Outlook



#### Requirements

- Readout architecture
  - → Salsa ASIC
  - $\rightarrow$  FEB
  - → System scale
- Organization
  - → Production strategy
  - → Planning
  - → QA and risk mitigation
- Summary

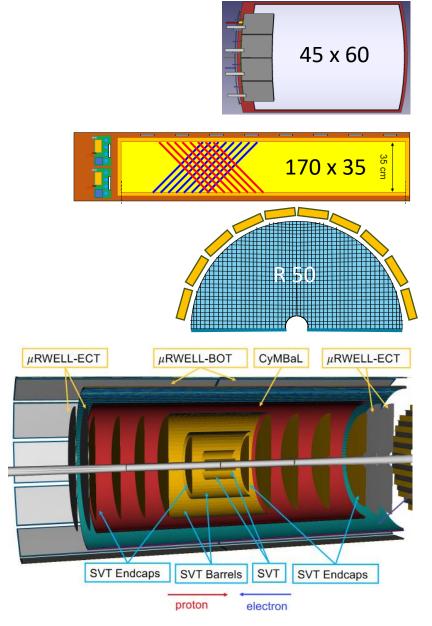
#### References

- → Signal <a href="https://indico.bnl.gov/event/20965/contributions/82420/attachments/50649/86604/231026\_IM\_CyMBal\_ExpectedSignal.pdf">https://indico.bnl.gov/event/20965/contributions/82420/attachments/50649/86604/231026\_IM\_CyMBal\_ExpectedSignal.pdf</a>
- → Data collection https://indico.bnl.gov/event/18118/contributions/72179/attachments/45781/77366/221221\_ MpgdDataCol IM.pdf
- → Calibration <a href="https://indico.bnl.gov/event/16040/contributions/64090/attachments/41290/69185/220520\_MpgdTrack\_CalibRates\_IM.pdf">https://indico.bnl.gov/event/16040/contributions/64090/attachments/41290/69185/220520\_MpgdTrack\_CalibRates\_IM.pdf</a>
- → Salsa https://indico.bnl.gov/event/22053/contributions/86152/attachments/52272/89395/SALSA\_EPIC\_electronics\_DAQ\_20240125.pdf
- → MPGD LV <a href="https://indico.bnl.gov/event/22316/contributions/87363/attachments/52727/90159/240215\_IM\_MpgdPower.pdf">https://indico.bnl.gov/event/22316/contributions/87363/attachments/52727/90159/240215\_IM\_MpgdPower.pdf</a>
- → FEB options <a href="https://indico.bnl.gov/event/21104/contributions/83856/attachments/51197/87574/231127\_IM\_Mpgd\_VtrxPlus.pdf">https://indico.bnl.gov/event/21104/contributions/83856/attachments/51197/87574/231127\_IM\_Mpgd\_VtrxPlus.pdf</a>
- → Detailed study of FEB organization options and their powering schemes provided in support material
- → Run control state machine and proposal of synchronous commands provided in support material
- → Salsa and Prisme PLL IP proposals, provided in support material



## Charge questions addressed




- 1. Are the technical performance requirements appropriately defined and complete for this stage of the project?
- 2. Are the plans for achieving detector performance and construction sufficiently developed and documented for the present phase of the project?
- 3. Are the current designs and plans for detector, electronics readout, and services sufficiently developed to achieve the performance requirements?
- 4. Are plans in place to mitigate risk of cost increases, schedule delays, and technical problems?
- 5. Are the fabrication and assembly plans for the various tracking detector systems consistent with the overall project and detector schedule?
- 6. Are the plans for detector integration in the EIC detector appropriately developed for the present phase of the project?
- 7. Have ES&H and QA considerations been adequately incorporated into the designs at their present stage?

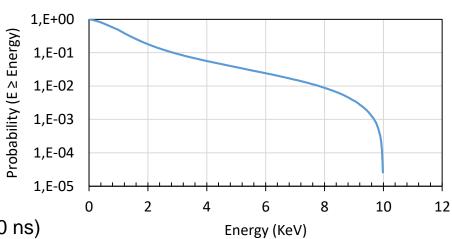


## Reminder on MPGD sub-systems and channel counts

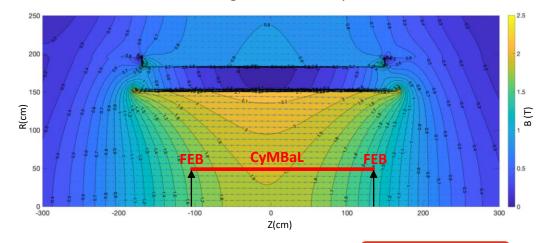


- Cylindrical Micromegas Barrel Layer: CyMBaL: ~30k channels
  - → 32 tiles of 1024 channels each
- μRWELL Barrel Outer Tracker : μRWell-BOT : ~100k channels
  - → 24 modules of 4 096 U-V strips each
- μRWell End Cap Tracker : μRWell-ECT : ~30k channels
  - → 8 half-disks of 4 000 X-Y strips each
- ~160k-channel heterogeneous system
  - → Micromegas, µRWell, barrel, endcap, curved, planar, circular
- Common approach to acquire data from different types of ePIC MPGDs
  - → Use same frontend ASIC
  - → Share frontend design between groups
    - Adapt form factor if needed






#### Requirements

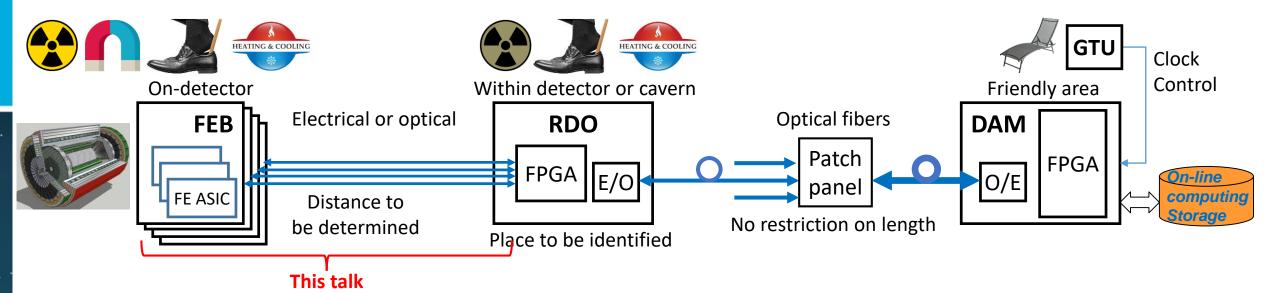



- Typical signal 1-1.5 keV resulting to 15-30 fC per channel
  - → Cluster sizes, detector gains, charge collection
- Aimed dynamic range of 10-bits
  - → Signal / noise of ~60
    - S/Th = $\sim$ 10 and Th/N =  $\sim$ 6
  - $\rightarrow$  Max / signal of ~10
- Timing precision of few ns
  - → Low contribution to the aimed overall time measurement accuracy of ~O(10 ns)
- Channel occupancies of ~10 kHz
  - $\rightarrow$  Including factor  $\pi$  of safety margin
- Streaming readout
  - → With support of *in-situ* calibration and of on-demand readout
- ~1.8 T magnetic field
- Mild radiation environment
  - $\rightarrow$  TID and neutron fluence after 10 years: 10 krad and 10<sup>11</sup> n<sub>eq</sub> / cm<sup>2</sup>
  - $\rightarrow$  20 MeV proton flux: 100 particle / cm<sup>2</sup> / s
- Stringent space for detector readout and services

#### Energy deposit in CyMBaL tracker



#### Magnetic field map

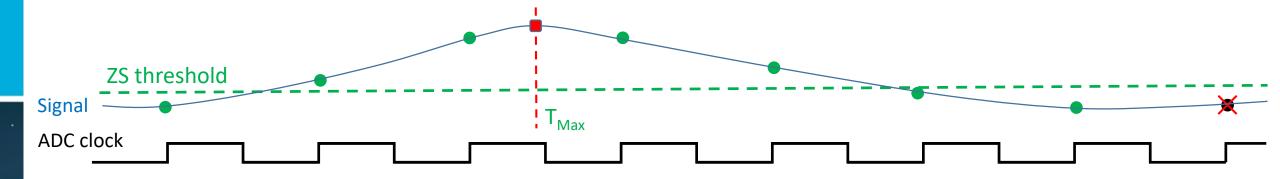





#### Readout organization of ePIC detector







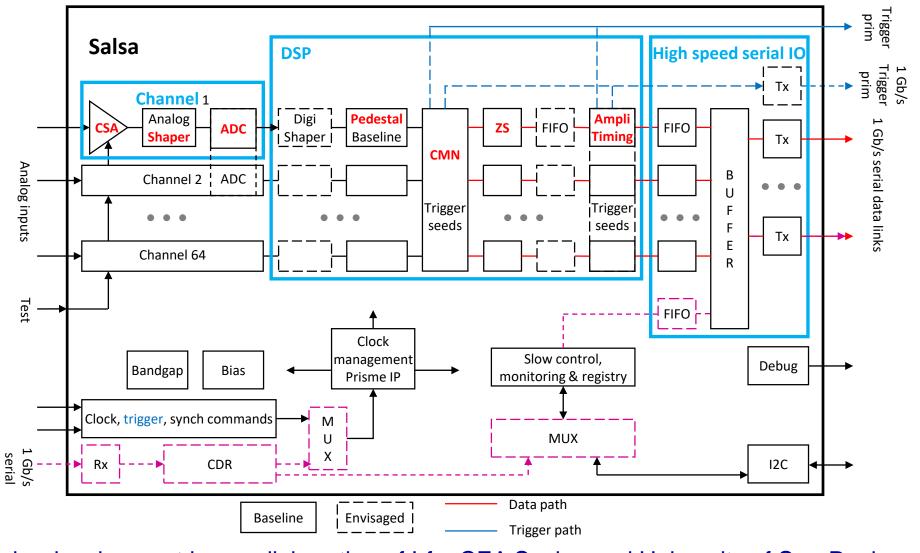

- FEB frontend board with readout ASICs
  - → Sub-detector specific
- RDO readout module first stage of FEB data aggregation, last stage to dispatch clock & control
  - → Mostly common design framework between sub-detectors, different form factor
- DAM data aggregation module interface with computing and global timing and control unit (GTU)
  - → Common design for all sub-detectors
- Downstream towards detector: clock, control, monitoring
- Upstream towards storage: physics, calibration, monitoring data



## Readout strategy: signal shape sampling






- Signal is continuously sampled with an ADC
- Signal samples above threshold are retained
- Nominal (physics data) readout: signal amplitude and timing is derived
  - → Time of max (as on example) or time of arrival (fitting samples on rising edge)
- On-demand readout: signal shapes or raw non-ZS data are provided
  - → Calibration, detector studies

- Guarantees best noise immunity and thus best S/N ratio
  - → Allows on-line common mode noise (CMN) subtraction before ZS



#### Salsa: a 64-channel versatile MPGD readout ASIC





- Currently under development by a collaboration of Irfu, CEA Saclay and University of Sao-Paolo
  - → Support from Project R&D program for Salsa prototyping including clock management IP Prisme



## 64-channel Salsa: brief recap of specifications



250 fC

ΑII

| <ul> <li>Channe</li> </ul> | features | ePIC MPGD needs |
|----------------------------|----------|-----------------|
|----------------------------|----------|-----------------|

→ 4 dynamic ranges : 50 fC, 250 fC, 500 fC, 5 pC
 → 10 peaking times : from 50 ns to 500 ns

→ 10 peaking times : from 50 ns to 500 ns
 → Support for high input capacitances up to 1 nF and beyond
 The signal relation

→ Both signal polarities
 → Rate per channel: up to 100 kHz
 Negative
 <10 kHz</li>

→ Sampling rate : programmable, up to at least 50 MSPS

50 MSPS

→ 12-bit ADC with >10-bit ENOB >9.6 bits

Digital stage programmable features

→ Pedestal equalization, common mode noise subtraction, zero suppression
All

→ Baseline tracking

→ Signal amplitude and timing extraction
Main readout option

• Clock management with Prisme IP:

→ Wide range jitter cleaner PLL, 4 clock frequency synthesizer, phase adjustment 100 MHz

Streaming and triggered readout

→ Four 1 Gbit/s serial links Single Gbit/s link

→ Non-ZS, signal shape or time-amplitude readout

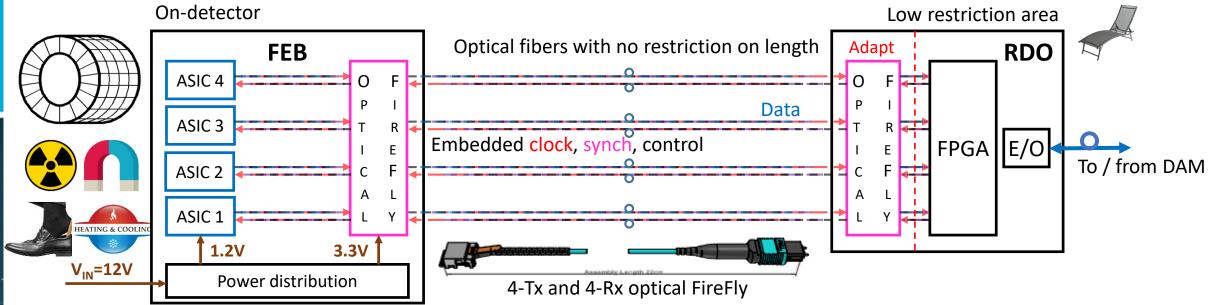
Backend

→ Traditional interface with separated clock, sync command and control ports

→ Innovative unified interface over 1 Gbit/s input link
Baseline

Implementation

 $\rightarrow$  65 nm TSMC


→ 10-15 mW/ch @ 1.2V

 $\rightarrow$  Radiation hardened : SEU, > 300 Mrad, >  $10^{13}$  n<sub>eq</sub> / cm<sup>2</sup> 10 krad,  $10^{11}$  n<sub>eq</sub> / cm<sup>2</sup>



#### 256-channel FEB with optical interface: aimed baseline

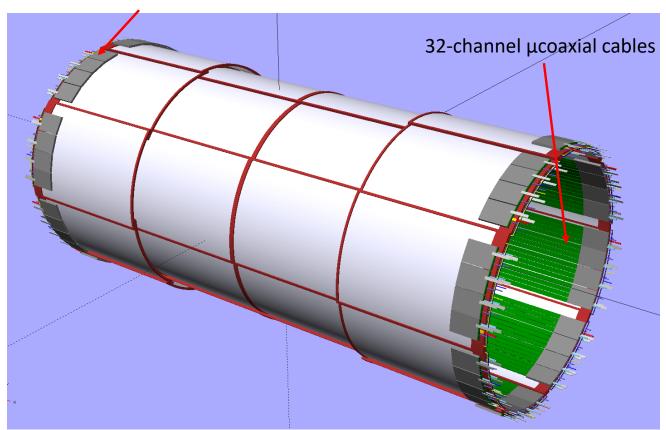




- FEB
  - → ASICs directly connected to 4-lane bidirectional parallel optic FireFly transceivers from Samtec
    - Single 1 Gbit/s Rx line encoding clock, sync run-control and asynchronous slow control and monitoring commands
    - Single 1 Gbit/s Tx line for physics, calibration, control and monitoring data
  - → Low active component count
    - Easier to adapt to challenging on-detector environment
    - Samtec FireFly: reported to stand TID of 50-100 krad and neutron fluence of at least 5x10<sup>11</sup> n<sub>eq</sub> / cm<sup>2</sup>
- RDO
  - → Based on common ePIC design with minimal adaptation for MPGDs
  - → Can be placed anywhere in experimental hall with no particular environmental restrictions
- Optimal tradeoff between complexity of the on-detector electronics and its power consumption



## Example of CyMBaL configuration under study




#### • 32K channels

- 128 256-channel FEBs
  - → 4 Salsa ASICs per FEB
- 32 1024-channel RDOs
  - → 4 FEBs per RDO

# 16 Salsa-s, 4 FEBs, 1 RD0 = 1024 channels

#### 256-channel FEBs





#### FEBs, Salsa-s and RDOs for MPGDs



Estimates of operational quantities for MPGDs assuming 256-channel FEBs

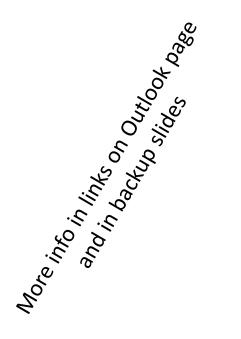
|       |      | СуМВаL       |  |  |  |
|-------|------|--------------|--|--|--|
|       | Tile | Sub-detector |  |  |  |
| FEB   | 4    | 128          |  |  |  |
| Salsa | 16   | 512          |  |  |  |
| RDO   | 1    | 32           |  |  |  |

| μRWell-BOT          |       |  |  |
|---------------------|-------|--|--|
| Module Sub-detector |       |  |  |
| 16                  | 384   |  |  |
| 64                  | 1 536 |  |  |
| 4                   | 96    |  |  |

| μRWell-ECT          |     |  |  |
|---------------------|-----|--|--|
| ½ disk Sub-detector |     |  |  |
| 16                  | 128 |  |  |
| 64                  | 512 |  |  |
| 4                   | 32  |  |  |

| Total |
|-------|
| MPGDs |
| 640   |
| 2 536 |
| 160   |

- Production quantities
  - Including prototyping, test-bench and quality assurance needs
  - → 750 FEBs
  - $\rightarrow$  4 000 Salsa-s
  - → 200 RDOs


- Work in progress to understand impact of mechanical constraints on FEB design
  - → Possibility to use the same form factor and ASIC integration level for all MPGDs



## Feasibility studies



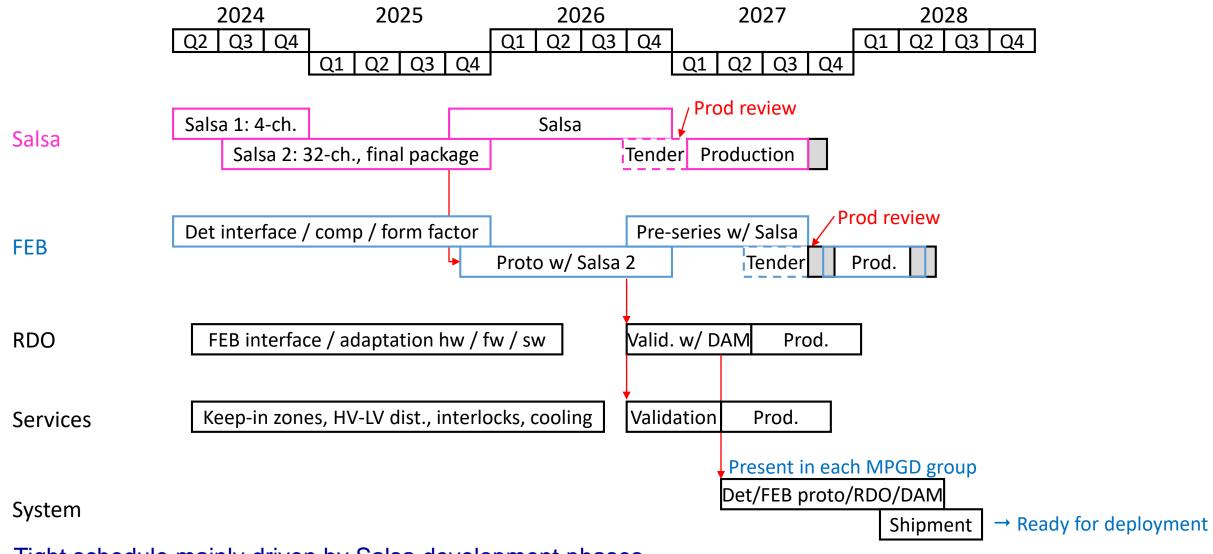
- Salsa and clock management Prisme IP prototypes developed
  - → Analog channel and clock synthesizer validated
- Several alternative FEB options have been evaluated
  - → Passive electrical RDO interface, VTRX+ optical RDO interface, merged FEB/RDO
- Data collection and calibration protocols elaborated
  - → Physics and calibration data throughput estimated
    - On-line periodic calibration is possible
  - → FEB RDO link occupancy is ~30 %: comfortable safety margin
- LV power requirements estimated and power distribution schemes compared
  - → e.g. Baseline FEB with FireFly optical interface requires : ~9W or 35 mW / channel
- Detector FEB connectivity studies on-going
  - → Compact and low-cost micro-coaxial cable assemblies from KEL under evaluation
- R&D on Samtec FireFly optical transceivers
  - → In close contact with Samtec optical division
    - Bilateral NDA between Samtec and Irfu, CEA Saclay renewed







## Design and production strategy




- Salsa will be produced and tested in quantities that will cover the needs of all ePIC MPGDs
- The FEB design will be shared with all MPGD groups
  - → If needed, FEB design adaptation for a particular geometry will be under sub-detector responsibility
- Common effort to adapt RDO-s and DAM-s to MPGD readout
  - → Firmware and Software
  - → And partially RDO hardware
- Common effort on services
  - → LV and HV distribution, interlock, slow control and cooling
    - Common concern of several sub-detector systems in magnetic field
- FEB and RDO production and qualification tests will be shared between several sites
  - → Faster completion track
    - Especially in case of different FEB form factors
  - → Lower risk associated with procurement and task execution delays



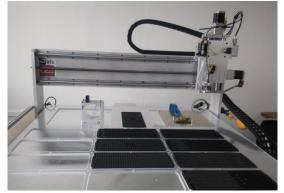
## Planning

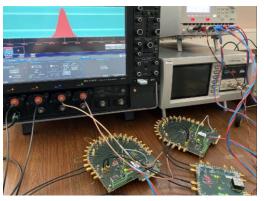




- Tight schedule mainly driven by Salsa development phases
  - → With ~6-9-month contingency




#### Quality assurance


irakli.mandjavidze@cea.fr



- Expertise at Saclay in large scale production of ASICs and frontend boards
  - → In-house: automated ASIC tester robots and FE production test benches
  - → In industry : providing turn-key test benches
    - Ex: 40 000 Rafael and 80 000 Catia ASICs for CMS Ph2 upgrade
    - Ex: 700 Alice Solar, 170 LTDB Atlas, 150 Clas12 FEU boards
- Rich set of equipment for Salsa and FEB test benches
  - → High-end LeCroy and Tectronix oscilloscopes
  - → High performance phase noise analyzer
  - → Low jitter precision clock sources
  - → Climate chamber
  - → Bonding machines
- Expertise in system-level design, production, commissioning, maintenance
  - → Detector readout electronics acquisition software analysis
    - Clas12 MVT, T2K TPCs, Asacusa tracker, ...
  - → Respecting ES&H regulations of host labs (BNL, CERN, JLab, J-PARC)
- Expertise in radiation hard ASIC design and validation techniques
  - → Access to CERN, French and European radiation source facilities
- Access to high magnetic field facilities
  - → At CERN and at Saclay

Tracking Detectors Review, March 20-21, 2024









16



#### Identified risks and their mitigation



- Unexpected Salsa behavior or performances issues
  - → Diagnostic-correction-production-validation cycle may require 1 year
- Delays in mass-production of FEBs and RDOs
  - → At least two production and validation sites
- Component procurement delays
  - → Usual practice of anticipated acquisition of long lead time components of choice
  - → Establishing privileged partnership with manufacturers
    - e.g. Irfu CEA Saclay has renewed bilateral NDA with Samtec optical division
- Radiation impact on COTS components
  - → Use of components from the list of components proven for radiation tolerance
  - → Validation of components in radiation facilities for ePIC-like ionization doses and particle fluxes
  - → SEU: implementing error detection and recovery mechanisms adopted by ePIC collaboration
- Noise impact on data volume
  - → On-line coherent noise subtraction
  - → Enough bandwidth to readout signal shapes and apply more sophisticated discrimination algorithms on-line

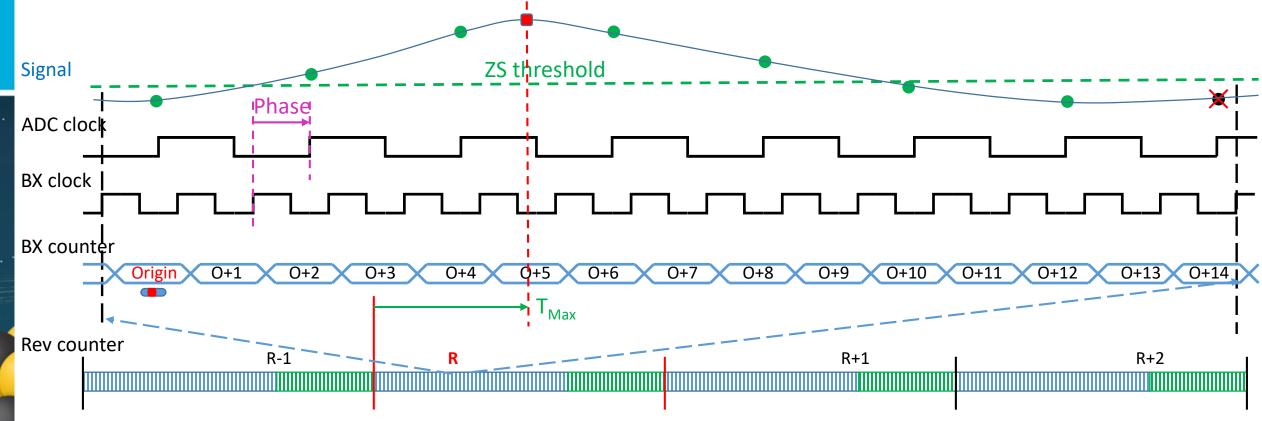


#### Summary



- Envisaged solutions for the ePIC MPGD readout are viable and cover performance requirements
- Engaged groups have necessary experience for large scale system design, production and commissioning
- R&Ds are on-going
  - → Detector FEB connectivity
  - → Integrated ASIC interface
  - → COTS components validation for ePIC environment
- Design of Salsa ASIC drives current planning
- Closely following and contributing to collaboration-wide efforts
  - → Precise identification of keep-in-out zones between the sub-detectors
  - → Efficient low form factor magnetic-field tolerant powering means
  - → Defining of run-control state machine and set of rules that detector partitions need to obey
  - → Error detection and recovery strategy
- Pursuing discussions within the MPGD DSC to identify second site for FEB design and production
  - → In addition to Irfu, CEA Saclay
- Planning is compatible with the overall ePIC installation schedule



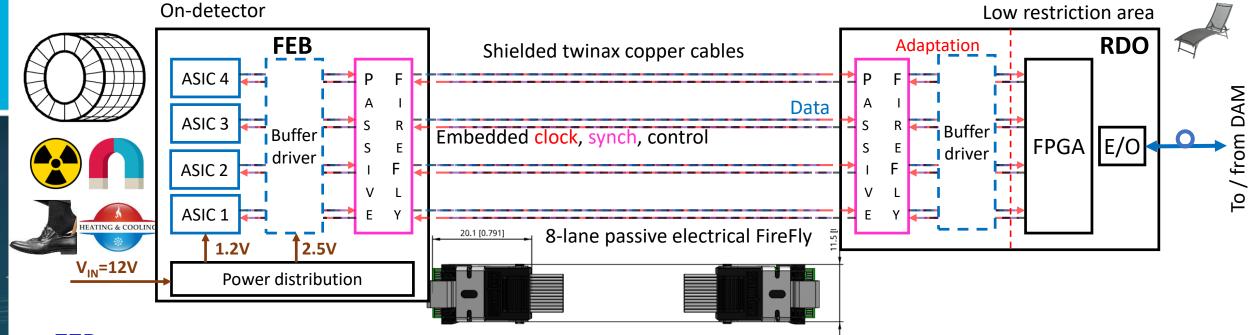



## Backup



## Readout strategy: signal shape sampling






- ADC clock is derived from bunch crossing clock and is its (sub)multiple (e.g. ~50 MHz)
  - → Known frequency and phase relationship exists between the two clocks
- Signal above threshold is tagged by a timestamp relative to revolution tick
  - → Max (as on example) or time of arrival (fitting samples on rising edge)
  - → Timing association with data from other sources possible



## Backup option: 256-channel FEB with electrical interface





- FEB
  - → ASICs directly connected to 4-lane bidirectional parallel optic FireFly transceivers from Samtec
    - Single 1 Gbit/s Rx line encoding clock, sync run-control and asynchronous slow control and monitoring commands
    - Single 1 Gbit/s Tx line for physics, calibration, control and monitoring data
  - → Low active component count
    - Easier to adapt to challenging on-detector environment
    - Samtec electrical FireFly: drop-in compatibility with optical counterpart
- RDO
  - → Based on common ePIC design with minimal adaptation for MPGDs
  - → Possibly can be placed in a low restriction area
- Attention must be payed for ground loops and noise pickup over long distance



#### Frontend data volume estimates



- Physics: support two zero suppression modes
  - → Nominal : peak finding readout
    - 12-bit amplitude, 12-bit time of max, 8-bit ToT
  - → On-demand : full signal shape readout
    - All samples (12-bit) above threshold (typically 15-25)

Estimated CyMBaL **physics** data bandwidth per Salsa ASIC

Channel rate kHz

10 (5 x safety)

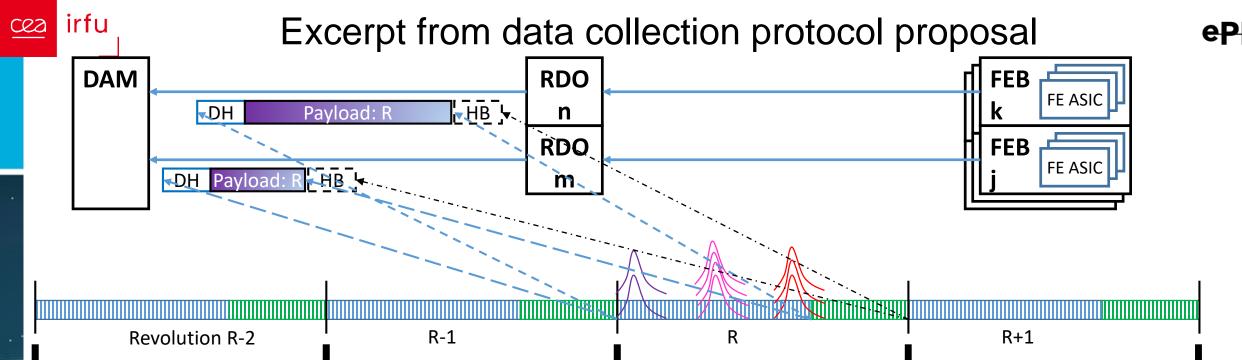
Peak finding Mbit/s

Signal shape Mbit/s 265

- On-line calibration : on demand readout
  - → Programmable number of non-ZS samples
  - → Signal shape for calibration pulse

Estimated calibration data bandwidth per ASIC ~6 Mbit/s

- FEB RDO link occupancy : ~30 %
  - → Comfortable safety margin, even for on-demand signal shape readout
- Overall physics frontend data of MPGDs
  - → Accurate estimates still to be done

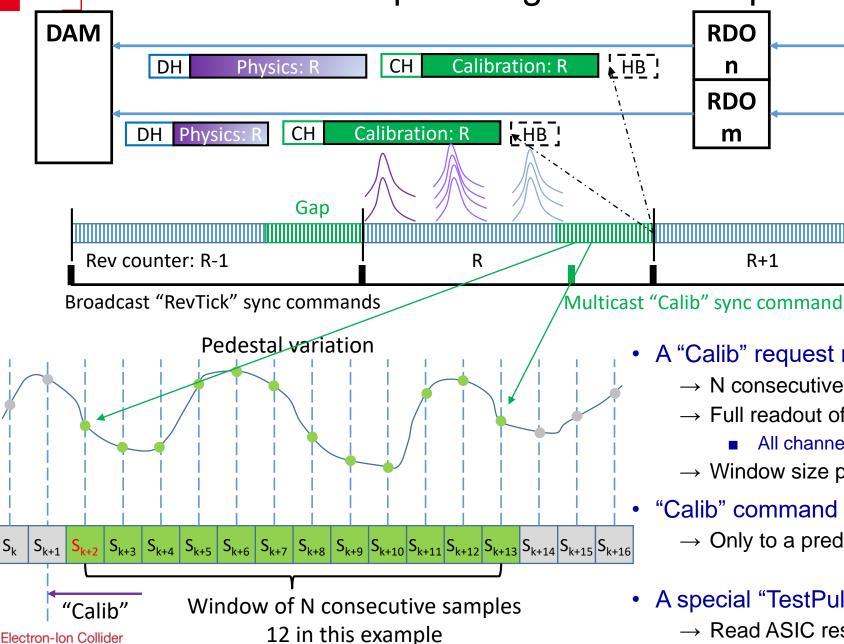

Data (Gbit/s)

CyMBaL 35 μRWell-BOT

μRWell-ECT 35 Total 170

NB: in nominal operation, the bulk of the physics frontend data will be further processed before being archived

· e.g. clustering




Broadcast "RevTick" sync commands

- Combine FEB (ASIC) data belonging to the same revolution
  - → If needed, heartbeat (RevTick) acknowledgement is sent after the last data belonging to the same revolution
  - → Revolution-level granularity might be handy for fragment building in RDO and in DAM
    - A compromise between memory requirement and aggregation
    - If too long, data fragments can be sent in a succession of packets
- DAM performs revolution record building based on revolution numbers embedded in data
  - → Heartbeat packet can be used as indication that no more data is expected from RDO or FEB for this revolution
- In other words, consider the RevTick as a 78.195 kHz constant rate trigger
  - → Do classical event building in RDO and DAM with a readout window of ~12.7886 µs







- A "Calib" request results in a window readout
  - → N consecutive samples

**RDO** 

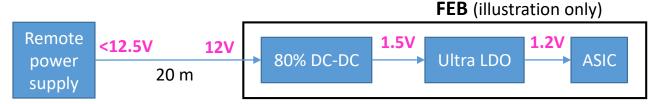
m

R+1

- → Full readout of non-ZS data
  - All channels of all ASICs in concerned FEBs

**FEB** 

**FE ASIC** 


- → Window size programmable
- "Calib" command distributed in barrel shifter mode
  - → Only to a predefined FEBs to avoid data congestion
- A special "TestPulse" command to fire on FEB pulser
  - → Read ASIC response to know charge



#### LV power distribution for MPGD frontends



- Powering fronted electronics in ~2 T magnetic field is a challenge task
  - → Efficient scheme requires on-board magnetic field tolerant DC/DC converters
    - Coupled with ultra low drop-out (LDO) linear regulators
    - Avoids significant power dissipation in LV cables



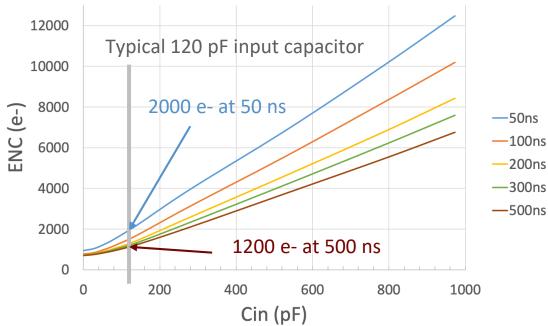
- 256-channel FEB with a bidirectional 4-lane FireFly optical interface: 9 W or 35 mW / channel
  - → LV wire cross-section : 1 mm<sup>2</sup>
    - NB: In absence of DC-DC converters, LDO-based power distribution will require 5.5 mm² wires

Estimates of MPGD sub-detector power needs

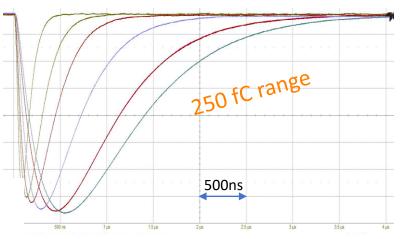
|          | СуМВаL |              | μRWell-BOT |              | μRWell-ECT |              | Total |
|----------|--------|--------------|------------|--------------|------------|--------------|-------|
|          | Tile   | Sub-detector | Module     | Sub-detector | ½ disk     | Sub-detector | MPGDs |
| Power(W) | 36     | 1.2k         | 144        | 3.5k         | 144        | 1.2k         | 6k    |

- Engaging common intra- and extra-MPGD efforts to devise power distribution and cooling infrastructure
  - → Profit from expertise available within the Project in small form factor magnetic field tolerant DC-DC converters

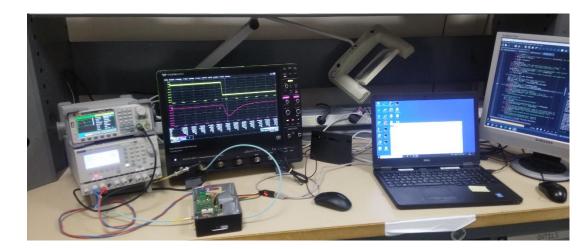



## Salsa0Analog: very frontend prototype




#### Prototype ASIC with 4 channels

- → 4 dynamic ranges : 50 fC, 250 fC, 500 fC, 5 pC
- $\rightarrow$  10 peaking times : from 50 ns to 500 ns
- → Support for high input capacitances
- → Both signal polarities


#### **Equivalent Noise Charge** in 250 fC range



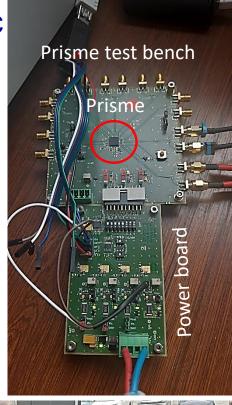
## Programmable **Peaking time** 50 ns to 500 ns










#### Prisme: clock management jitter cleaner PLL IP



- Prisme prototype to test a new 65 nm hybrid PLL IP for Salsa and high fidelity fan-out ASIC
  - → Large input frequency range
  - → 4 clock outputs with programmable frequencies and phase
- Test boards arrived end of February
  - → Test bench completed clock generator, high-end 80 GS/S scope and phase noise analyzer

#### Preliminary results

- → Power consomption nominal
- → I2C working to read and write registers
- → Low voltage differential (CLPS) receivers and transmitters operational
- → Digital branch of PLL operational
  - Allows to find the right frequency range for the analog branch
- → Internal oscillator reaches nominal 3.2 GHz
- → Locks occur for 40 MHz and 100 MHz input
- → All for outputs tested with programmable frequencies
- → Ongoing tests on jitter characterization and optimization







## **Planning**



#### Salsa

- → 2024 : Salsa1
  - Several fully instrumented channels including analog very fronted and 12-bit MSPS ADC
  - Clock management circuitry based on Prisme IP
- → 2025 : Salsa2
  - A 32-channel prototype with main DSP functionalities and serial link interfaces targeting final packaging
  - Prototyping of unified backend interface based on a serial link
- → 2026 : Salsa pre-series
  - A 64-channel fully functional prototype
- → 2027 : Mass production

#### FEB

- → 2024-2025 : small prototype developments
  - Assessment of COTS components e.g. power and monitoring solutions for radiation and magnetic field environment
  - R&D on detector FEB interface connectors
  - FEB form factor and Salsa integration studies for different MPGDs
  - Validation of unified interface with ASICs
- → 2026 : advanced prototype development
  - Based on Salsa2
- → 2027 : Pre-series production
  - Based on pre-series Salsa
- → 2028 : Mass production



#### **Planning**



#### • RDO

- → 2024 2025 : FEB RDO interface specification and validation, plus adaptation hardware design
- → 2026 : FEB-RDO communication validation based on Salsa2 prototype systems
- → 2027 : RDO production

#### Services

- → 2024 : Identify clearly keep-in-out zones
- → 2025 : Validate LV distribution & come out with cooling scheme, plus interlocks
  - Profit from rich expertise within the ePIC groups on magnetic field tolerant DC/DC regulators
- $\rightarrow$  2026-2027 : production

#### System

- → 2027 : Fully instrumented slice for every group
  - including FEB prototypes, at least two RDOs and a DAM
- → 2028 : Full system chain validation
  - Including slow control and monitoring