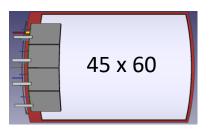


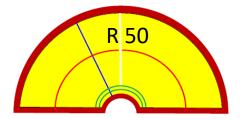
ePIC Tracker PDR: MPGD electronics

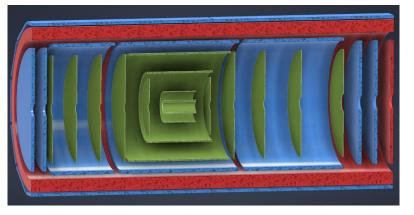
???@cea.fr

Irfu, CEA Saclay 20/Mar/2024

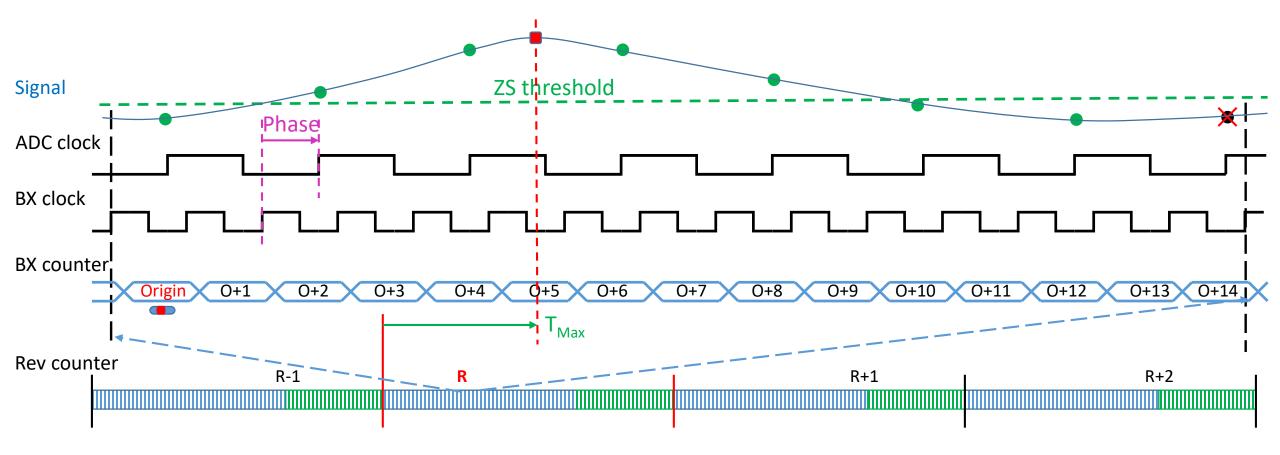
Outlook


- Requirements
- Architecture
 - → Salsa ASIC
 - \rightarrow FEB
 - \rightarrow Data
 - → Services
- Organization
 - → Production startegy
 - \rightarrow Planning
 - \rightarrow QA and risk mitigation
- Summary


Reminder on MPGD sub-systems and channel counts

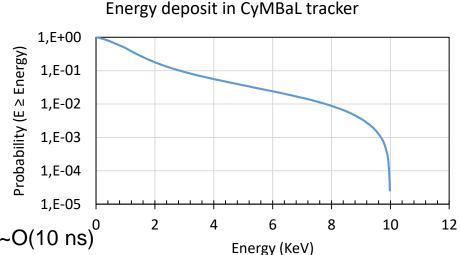


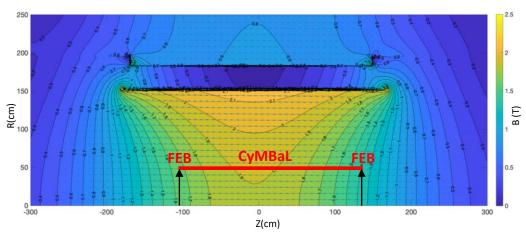
- Cylindrical Micromegas Barrel Layer: CyMBaL: ~32k channels
 - → 32 tiles of 1024 channels each
- μRWELL Barrel Outer Tracker : μRWell-BOT : ~100k channels
 - → 24 modules of 4 096 U-V strips each
- μRWell End Cap Tracker : μRWell-ECT : ~20k channels
 - → 8 DEEs of 2 400 R-Phi strips each
- ~160k-channel heterogeneous system
 - → Micromegas, µRWell, barrel, endcap, curved, planar, circular
- Common approach to acquire data from different types of ePIC MPGDs
 - → Use same frontend ASIC
 - → Share frontend design between groups
 - → Adapt FEB form factor and channel count


SVT MPGDs

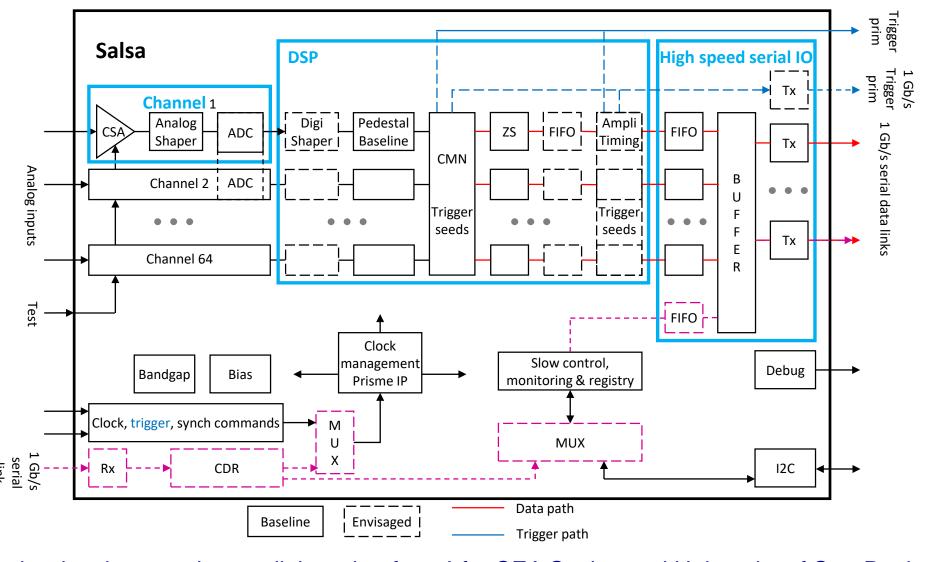
ToF (fiducial volume)

Readout strategy: signal shape sampling with ADC


- ADC clock is derived from bunch crossing clock and is its (sub)multiple (e.g. ~50 MHz)
 - → Known frequency and phase relationship exists between the two clocks
- Signal above threshold is tagged by a timestamp relative to revolution tick
 - → Max (as on example) or time of arrival (fitting samples on rising edge)
 - → Timing association with data from other sources possible


Requirements

- Typical signal 1-1.5 keV resulting to 15-30 fC per channel
 - → Cluster sizes, detector gains, charge collection
- Aimed dynamic range of 10-bits
 - → Signal / noise of ~60
 - S/Th = ~10 and Th/N = ~6
 - \rightarrow Max / signal of ~10
- Timing precision of few ns
 - → Low contribution to the aimed overall time measurement accuracy of ~O(10 ns)
- Channel occupancies of ~10 kHz
 - \rightarrow Including factor π of safety margin
- Streaming readout
 - → With support of *in-situ* calibration and of on-demand readout
- ~1.8 T magnetic field
- Mild radiation environment
 - \rightarrow TID and neutron fluence after 10 years: 10 krad and 10¹¹ n_{eq} / cm²
 - → 20 MeV proton flux: 100 particle / cm² / s
- Stringent space for detector readout and services


Magnetic field map

Salsa: a 64-channel versatile MPGD readout ASIC

- Currently under development by a collaboration from Irfu, CEA Saclay and University of Sao-Paolo
 - → Support from eRD109 for Salsa prototyping including clock management IP Prisme

64-channel Salsa: brief recap of specifications

Channel features
 ePIC MPGDs

→ 4 dynamic ranges : 50 fC, 250 fC, 500 fC, 5 pC 250 fC

 \rightarrow 10 peaking times : from 50 ns to 500 ns 200 ns

→ Support for high input capacitances up to 1 nF and beyond ~200 pF

→ Both signal polarities
Negative

→ Rate per channel : up to 100 kHz <10 kHz

→ Sampling rate : programmable, up to at least 50 MSPS
50 MSPS

→ 12-bit ADC with >10-bit ENOB >9.6 bits

Digital stage programmable features

→ Pedestal equalization, common mode noise subtraction, zero suppression

→ Baseline tracking

→ Signal amplitude and timing extraction

Clock management with Prisme IP :

→ Wide range jitter cleaner PLL, 4 clock frequency synthesizer, phase adjustment
100 MHz

Streaming readout

→ 4 Gbit/s serial links Single Gbit/s link

→ Non-ZS, signal shape or time-amplitude readout
All

Backend

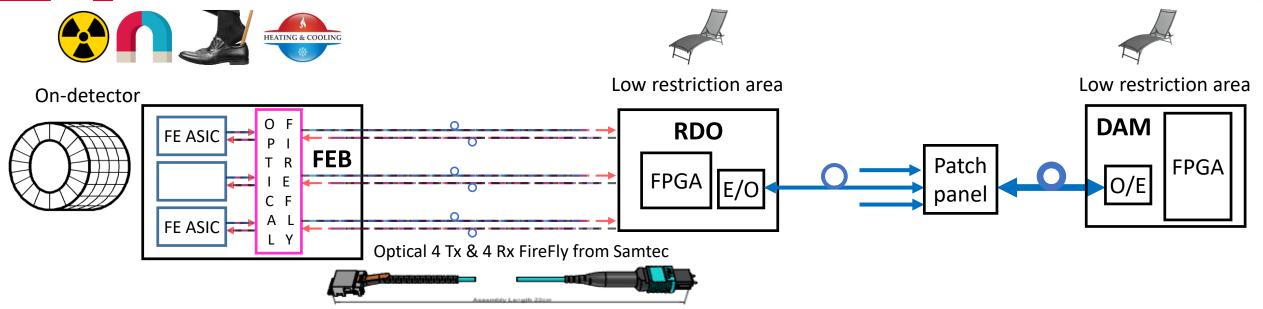
→ Traditional interface with separated clock, sync command and control ports

→ Innovative unified interface over 1 Gbit/s input link

Baseline

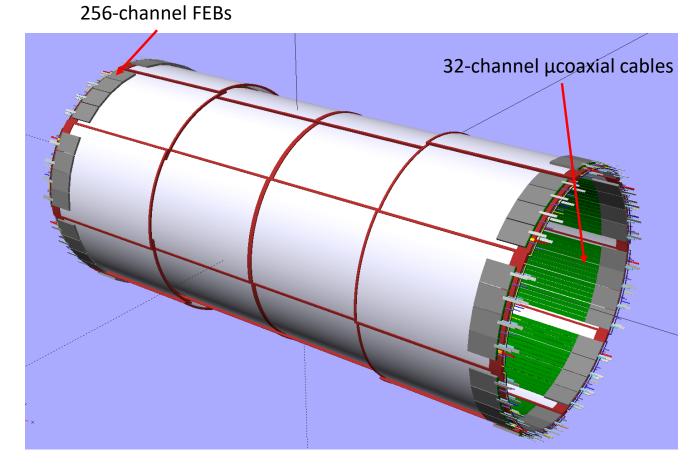
Implementation

 \rightarrow 65 nm TSMC


→ 10-15 mW/ch @ 1.2V

 \rightarrow Radiation hardened : SEU, > 300 Mrad, > 10^{13} n_{eq} / cm² 10 krad, 10^{11} n_{eq} / cm²

MPGD FEB with optical interface: aimed baseline


- FEB
 - → ASICs directly connected to 4-lane bidirectional parallel optic FireFly transceivers
 - Single Rx line encoding clock, sync run-control and asynchronous slow control and monitoring commands
 - → Low active component count
 - Easier to adapt to challenging on-detector environment
 - Samtec FireFly: reported to stand TID of 50-100 krad and neutron fluence of at least 5x10¹¹ n_{eq} / cm²
- RDO: mostly common hardware with minimal adaptation
 - → Can be placed anywhere in experimental hall with no particular environmental restrictions
- An optimal tradeoff between the complexity of the on-detector electronics and its power consumption

Example of CyMBaL: one of the possible configurations under study

- Still under torment of optimization
 - → Just a snapshot to give an idea
- 32K channels
- 128 256-channel FEBs
 - → 4 Salsa-s per FEB
 - → Only central detector FEBs visible
 - Peripheral FEBs in a row bellow
 - Or in a second row
- 32 1024-channel RDOs
 - → 4 FEBs per RDO
- Place for RDOs
 - → Electrical FEB-RDO interface : 5-6 m
 - Can probably be placed further away using driver-buffers but potential issues of ground loops and noise pickup
 - → Optical FEB-RDO interface : no limit
 - Targeted baseline option
- FEB RDO mapping for other MPGDs yet to be defined

FEBs and Salsa-s for MPGDs

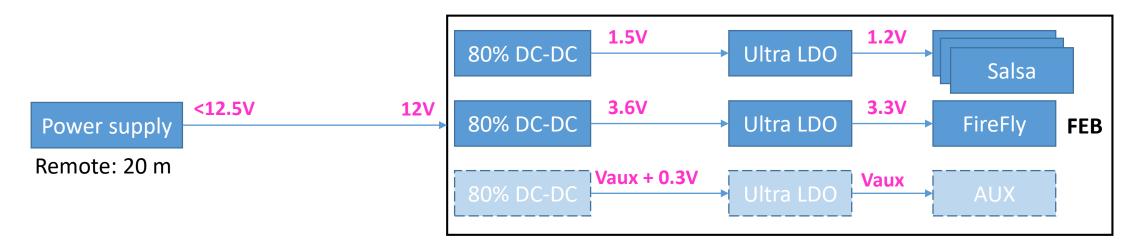
Estimates for MPGDs assuming 256-channel FEBs

		СуМВаL		μRV	Vell-
	Tile	Sub-detector		Module	S
FEB	4	128		16	
Salsa	16	512		64	
RDO	1	32		4	

I-BOT*	μRV	μRWell-ECT*	
Sub-detector	DEE	Sub-detector	
384	10	80	
1536	40	320	
96	2.5	20	

^{*}FEB form factor and number of channels to be defined

- Total quantities including
 - → 750 FEBs including ~10% quality assurance quantities and test-bench needs
 - → 3 000 Salsa-s including prototyping needs
 - → 200 RDOs including ~10% quality assurance quantities and test-bench needs


• NB : FEB design requires better understanding of mechanical constraints

LV power distribution for MPGD frontends

- Based on magnetic field tolerant DC/DC converters
 - → Remote power supply distributes 12V with < 0.5V voltage drop over 20 m cables

- Powering 256-channel FEB with a bidirectional 4-lane FireFly optical interface
 - → 9 W per FEB
 - → 35 mW / channel
 - → LV wire cross-section : 1 mm²
- NB: In absence of DC-DC converters, LDO-based power distribution will require 5.5 mm² wires
 - → Availability of small form factor magnetic field tolerant DC-DC converters is crucial

LV power distribution for MPGD frontends

Estimates of MPGD sub-detector power needs assuming 256-channel FEBs

		CyMBaL	
	Tile Sub-dete		
Power(W)	36	1.2k	

μRWell-BOT*		
Module Sub-detect		
144	3.5k	

μRWell-ECT*		
DEE	Sub-detector	
90	0.8k	

*FEB form factor and number of channels to be defined

- Total of ~5.5 kW power
- NB : design of frontend power distribution and cooling requires better understanding of mechanical constraints
 - → In coordination with other sub-detectors

Frontend data volume estimates for CyMBaL tracker

- Physics: zero suppression
 - → Case 1: Sampling readout
 - 500 ns readout window when signal is above threshold
 - 50 MSPS
 - 12-bits per sample, 50 MSPS, 25 samples
 - → Case 2: Peak-finding readout
 - 12-bit amplitude, 12-bit time of max, 8-bit ToT
- Calibration : on demand non ZS readout
 - → One of the Possible scenario
 - Calibration data requested every 100 Hz
 - 50 consecutive sample readout
 - 50 x 1000 samples per channel
- Data volume determined by physics
 - → Calibration can even be done regularly on-line
 - e.g. during the revolution gaps

Estimated **physics** data bandwidth per Salsa ASIC

Char kHz	nnel rate	Sampling Mbit/s	Amplitude - Tir Mbit/s
2	(physics)	53	8.2
10	(safety)	264	41
50	(Clas12)	1 318	205

Estimated calibration data bandwidth per ASIC ~6 Mbit/s

- Still background generated data has to be taken into account
 - → Hens safety factor of 5

Frontend data volume estimates

- CyMBaL:
 - → Assuming 10 kHz hit rate per channel

	Sampling Gbit/s	Amplitude - Time Gbit/s
256-channel FEB	1.2	0.25
1024-channel RDO = 1 tile	5.0	1.0
Sub-detector	160	35

- MPGD sub-detectors
 - → Accurate estimates still to be done
 - → Crude summary

	CyMBaL	
	Sampling	Amp-Time
Data (Gbit/s)	160	35

μRWell-BOT		
Sampling Amp-Time		
500	100	

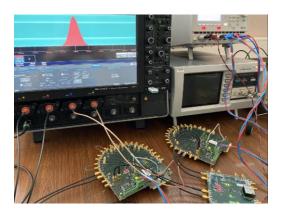
μRWell-ECT		
Sampling Amp-Time		
100	20	

NB: these are frontend data estimates, not the data to tape

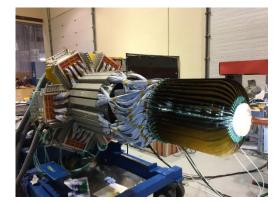
Design and production strategy

- Salsa will be produced and tested in quantities that will cover the needs of all ePIC MPGDs
- The FEB design will be shared with all MPGD groups
 - → Including detector interface studies
 - Connectors, micro-coaxial cables
- Feb design adaptation for particular geometry will be under sub-detector responsibility
- Common effort to adapt FEB-RDO-DAM interface, RDO and DAM fw / sw
 - → Adaptation of RDO hardware may need per sub-group efforts
- Common effort on services
 - → LV and HV distribution, interlock, slow control and cooling
 - → Common concern of several sub-detector systems in magnetic field
- FEB production and qualification tests will be shared between several sites
 - → Required quantities exclude single site responsibility
 - Especially in case of different form factor boards
- RDO production responsibility to be understood

Quality Assurance



- Expertise in large scale production of ASICs and frontend boards
 - → In-house : automated ASIC tester robots and FE production test benches
 - → In industry : providing turn-key test benches
 - → Ex: Rafael (40 000) and Catia (80 000) ASICs for CMS Ph2 upgrade
 - → Ex: Alice Solar (700), Clas12 FEU (150)


- → High-end LeCroy and Tectronix oscilloscopes
- → High performance phase noise analyzer
- → Low jitter clock sources
- → Climate chamber
- → Bonding machines
- Expertise in system-level validation
 - → Detector readout electronics acquisition software analysis
 - Clas12 MVT, T2K TPCs, Asacusa tracker, ...
- Expertise in radiation hard ASIC design and validation techniques
 - → Access to CERN, French and European facilities
- Access to high magnetic field facilities
 - → At CERN and at Saclay

16

Planning

Salsa

- → 2024 : Salsa1
 - Several fully instrumented channels including analog very fronted and 12-bit MSPS ADC
 - Clock management circuitry based on Prisme IP
- → 2025 : Salsa2
 - A 32-channel prototype with main DSP functionalities and serial link interfaces targeting final packaging
 - Prototyping of unified backend interface based on a serial link
- → 2026 : Salsa pre-series
 - A 64-channel fully functional prototype
- → 2027 : Mass production

FEB

- → 2024-2025 : small prototype developments
 - Assessment of COTS components e.g. power and monitoring solutions for radiation and magnetic field environment
 - R&D on detector FEB interface connectors
 - FEB form factor and Salsa integration studies for different MPGDs
 - Validation of unified interface with ASICs
- → 2026 : advanced prototype development
 - Based on Salsa2
- → 2027 : Pre-series production
 - Based on pre-series Salsa
- → 2028 : Mass production

Planning

18

• RDO

- → 2024 2025 : FEB RDO interface specification and validation, plus adaptation hardware design
- → 2026 : FEB-RDO communication validation based on Salsa2 prototype systems
- → 2027 : RDO production if attributed to sub-groups

Services

- → 2024 : Identify clearly keep-in-out zones
- → 2025 : Validate LV distribution & come out with cooling scheme, plus interlocks
 - Profit from rich expertise within the ePIC groups on magnetic field tolerant DC/DC regulators
- \rightarrow 2026-2027 : production

Detector R&D

- → Detector R&D will require readout during 2024-2025
 - Large scale Salsa-based electronics will not be available until 2027
 - Though there will be some access to Salsa2 (32-channel) and Salsa pre-series systems
 - Irfu, CEA Saclay poses Dream-based electronics in quantities to satisfy its needs for local cosmic tests and beam tests
 - To be understood for other groups

System

- → 2027 : Fully instrumented slice for every group
 - including FEB prototypes, at least two RDOs and a DAM
- → 2028 : Full system chain validation
 - Including slow control and monitoring

Risk mitigation

- Risks are related to unexpected Salsa behavior or performances issues
 - → Diagnostic-correction-production-validation cycle may require 1 year
 - Though can be faster if a single mask needs to be changed
- To be continued...

Summary

- Envisaged solutions for the ePIC MPGD readout are viable and cover performance requirements
- Engaged groups have necessary experience for large scale system design, production and commissioning
- R&Ds are on-going
 - → Detector FEB connectivity
 - → Integrated ASIC interface
 - → COTS components validation for ePIC environment
- Design on Salsa ASIC follows its uncompressible phases
- Collaboration-wide efforts are needed
 - → Precise identification of keep-in-out zones between the sub-detectors
 - → Efficient low form factor magnetic-field tolerant powering means
 - → Precise identification of run-control state machine and set of rules that detector partitions need to obey
 - → Error detector and recovery strategy
- At least one more FEB (design-)production site needs to be identified
 - → In addition to Irfu, CEA Saclay
- Planning is stringent

Some references

- Salsa https://indico.bnl.gov/event/22053/contributions/86152/attachments/52272/89395/SALSA_EPIC_electronics_DAQ_20240125.pdf
- MPGD LV https://indico.bnl.gov/event/22316/contributions/87363/attachments/52727/90159/240215_IM_MpgdPower.pdf
- Signal https://indico.bnl.gov/event/20965/contributions/82420/attachments/50649/86604/231026_IM_CyMBal_ExpectedSignal.pdf
- Calibration https://indico.bnl.gov/event/16040/contributions/64090/attachments/41290/69185/220520_MpgdTrack_CalibRates_IM.pdf
- Data collection https://indico.bnl.gov/event/18118/contributions/72179/attachments/45781/77366/221221_MpgdDataCol_IM.pdf
- FEB options https://indico.bnl.gov/event/21104/contributions/83856/attachments/51197/87574/231127_IM_Mpgd_VtrxPlus.pdf

Backup