

BIC Meeting - R&D March 1st, 2024

Goals and Objectives

Maria Żurek PHY, Argonne National Laboratory

Current ANL AstroPix **Telescope Setup**

Planned BIC Setup

Barrel Imaging Calorimetry R&D

FY23 - Generic R&D: https://www.jlab.org/sites/default/files/eic_rd_prgm/files/2022_Proposals/EIC R_D_Imaging_Calo_EICGENRandD2022_25.pdf

FY24 - Project R&D: https://wiki.bnl.gov/conferences/images/4/4e/EICProjectRD_FY24_ImagingB arrelCalorimeter.pdf

Detector Day: March 25, 2024

Objectives for today:

- Reminder of goals and milestones Status of R&D program components Planning critical items before possible FNAL beamtest

Project R&D - Original Plans FY24

- **Prior to installation at FTBF:** characterize used AstroPix v3 Quad sensor on the bench; take cosmics with Baby BCal, develop and test integrated readout system
- At the FTBF with proton and e/π beam:
 - Every stage requires **commissioning** of the whole system in the beam: MIPs **120 GeV protons**
 - **2 important benchmarks** with Baby BCal and integrated system: benchmark **response to pions** in simulations, evaluate e/π separation (with Cherenkov FTBF detector) **10-5 GeV** e/π beam

Project R&D - Plans FY24

FTBF Beam original estimated schedule (**1 full week each**, i.e. 2 weeks of half-day shifts), **together with ATLAS Telescope program** (Experiment T1224 in MTest 6.2 Enclosure):

• Stage 1: Estimated Winter '23, Stage 2: Estimated Spring '24, Stage 3: Estimated Summer '24

If Spring '24 is available \rightarrow proton (MIPs commissioning) and e/ π beam (5-10 GeV) needed

- Try to use cosmics, as much as possible, to integrate AstroPix & Baby BCAL. However, we need to also commision the readout system in high-occupancy environment of the beam (MIPs).
- Realistically we will be probably able to run in stage I and maybe II.
- First physics benchmark will be to test the response to pions (we can fold it in the simulation and benchmark e/π response).
 - The e/ π benchmark with Cherenkov will depend on how much time we can potentially get with e/ π beam. Realistically, not possible.

FY24 R&D Milestones

Milestone	Timeline	Experimental condition
M1: Baby BCAL setup complete in FNAL	Q1 FY24	-
M2: AstroPix chip v3 bench preparations completed	Q1 FY24	bench, source
M3: DAQ for the integrated system of Baby BCal and AstroPix chip ready	Q1 FY24	bench, source, cosmics
M4: Integrated system (Baby BCAL + AstroPix chip) commissioned in FNAL - Mode A	Q1 FY24	cosmics, p, e/π beam
M5: Energy spectrum for e/π measured and benchmarked	Q1-Q2 FY 24	e/π beam

FY24 R&D Milestones

Milestone	Timeline	Experimental condition
M6: SFILs readout with SiPMs installed	Q2 FY24	bench, source, cosmics
M7: SFILs integrated into DAQ	Q2 FY24	bench, source, cosmics
M8: System with SFILs commissioned at FNAL	Q2-Q3 FY24	cosmics, p, e/π beam
M9: Electron/Pion separation benchmarked against FNAL Cherenkov threshold counter	Q2-Q4 FY24	e/π beam
M10: Performance with new generation SiPM compared (SFILs)	Q2-Q4 FY24	e/π beam

FY23 Generic R&D Milestones

Beam test

- 1. Preparation of online and offline analysis software for the beam test
- 2. Assembly of the calorimeter module with attached SiPM readout and DAQ
- 3. Installation of the module in Hall D PS area
- 4. Participation in the beam test
 - a. Test of trigger and DAQ in the beam environment
 - b. Relative gain calibration of photosensors
 - c. Collection of FADC data (possibly with different electron energies and module incident angle, depending on opportunistic access to the area) with SiPM readout

Data analysis

- 1. Implementation of the prototype geometry in Geant4
- 2. Energy and time calibration of the data
- 3. Extraction of energy resolution and comparison with simulations
- 4. Implementation of the improved simulation responses in the full barrel ECAL simulation for further performance studies