Heavy-flavor tagging and intrinsic bottom at the EIC

Tom Boettcher

University of Cincinnati

HF and Jets WG meeting March 6, 2024

Extrinsic and intrinsic charm

Most PDF fits assume heavy quarks in the proton are generated perturbatively above $Q^2 \sim m_c^2$, but "intrinsic" heavy quarks are also possible.

JHEP 02 (2018) 059 Intrinsic charm predicted by Light-Front QCD (LFQCD): PLB 93 (1980) 451-455 Heavy charm quarks carry most of the proton momentum \rightarrow valence-like bump.

EMC $F_2^{c\bar{c}}$ data (Nucl. Phys. B 213, 31-64)

- First evidence for IC
 Still the only high-x DIS charm data
- Typically omitted from global PDF fits

Z + c directly probes the charm PDF (PRD 93, 074008 (2016))

LHCb identifies charm jets using displaced vertices (JINST 17 P02028 (2022))

LHCb results suggest valence-like IC (PRL 128 (2022) 082001)

The EIC will be able to see percent-level intrinsic charm

Intrinsic bottom is much more difficult

Bottom hadrons are rare and have small branching fractions.

The LHCb topological jet tagging strategy applied to the EIC

LHCb identifies heavy-flavor jets using the properties of secondary vertices in the jet, reaching $\sim 60\%$ tagging efficiency for bottom and $\sim 25\%$ for charm.

The strategy

- Generate EIC events with Pythia
- Smear charged particle momentum and positions according to the anticipated detector performance in the EIC Yellow Report.
- Build 2-track from displaced tracks based on distance of closest approach. Build n-track vertices by combining vertices that share tracks.
- Train bc-vs.-uds and b-vs.-c BDTs.
- Use the estimated tagging performance to study sensitivity to intrinsic bottom

Discriminating variables

An EIC detector can efficiently tag b events (arXiv:2402.11344)

HERA experiments measured $F_2^{b\bar{b}}$ at low x (EPJC 78 (2018) 6, 473)

- Used topological heavy-flavor tagging
- $\sqrt{s} = 320 \text{ GeV} \rightarrow \text{smaller } x$ than the EIC
- Small data sample compared to EIC

The EIC can precisely study b-hadron production (arXiv:2402.11344)

The EIC could be sensitive to intrinsic bottom (arXiv:2402.11344)

Using topological jet tagging from the LHC, the EIC has the potential to discover intrinsic bottom quarks.

Final thoughts

Absent IB, a precise measurement of $F_2^{b\bar{b}}$ is extremely valuable

- \blacksquare *b*-quark mass
- Heavy-flavor structure function evolution

Topological tagging has many applications

- Charm production
- Heavy-flavor angular correlations
- Jet tagging

