ePIC Electron Finder: Status and Next Steps

Tristan Protzman Lehigh University April 18th, 2024

Electron Identification

Goal: Develop an efficient and accurate algorithm for identifying electrons and identifying the scattered electron in DIS processes

Electron identification depends on the integration of multiple detectors

- ✤ Tracking -> momentum
- Calorimetry -> energy
- PID detectors -> additional e/hadron separation

Used in current algorithm:

- ✤ Tracking Particles
- ✤ Calorimetry
- PID Detectors

Electron Identification

eID currently relies on particle – cluster matching and E/p cut

Cluster Matching

- MatchClusters factory
- ✤ Truth info to associate particles to clusters
- ✤ Next step: Match without truth information

E/p Cut

- Two collections produced by ReconstructedElectrons factory
 - ReconstructedElectrons: 0.9 < E/p < 1.2
 - ReconstructedElectronsForDIS: 0.7 < E/p < 1.3
- Both collections are subsets of ReconstructedParticles
- ✤ Associations between collections are maintained

Scattered Electron Finders

- ✤ Goal: Identify the DIS lepton using only final state information
 - How do select the DIS electron given multiple candidates?
- Two scattered electron finder algorithms implemented for April release
- Baseline algorithms to benchmark more advance algorithms against

Scattered Electrons Truth

- ✤ Identifies first final state electron from MC collection as scattered electron
- ✤ Associates truth electron with reconstructed particles by object ID

Scattered Electron Finders

Scattered Electrons $E - p_z$

- Sums 4-momentum of electron candidate and hadronic final state
- Calculate (e+X).E()-(e+X).Pz() for each candidate electron
 - X is the sum of final state hadrons
- ✤ Candidate with greatest $E p_z$ is given as the most likely scattered electron
- Even without strict electron PID, right "most" of the time

Scattered Electron Finders

The two algorithms can be used independently to check performance

These are the simplest algorithms – this is the setup to enable the development of more complex algorithms (Are the final state kinematics consistent, semi-hard radiation clustering, ML algorithms, ...)

Using the electron finder – ElCRecon

Collection names

- ReconstructedElectrons
- ReconstructedElectronsForDIS
- ScatteredElectronsTruth
- ScatteredElectronsEMinusPz

void eID_testProcessor::ProcessSequential(const std::shared_ptr<const JEvent>& event) {
 // Get the collection of electrons output by the electron ID factory

const auto &electrons = *(event->GetCollection<edm4eic::ReconstructedParticle>("ReconstructedElectrons"));
for (const auto electron : electrons) {

identified_electrons_position->Fill(edm4hep::utils::eta(electron.getMomentum()), edm4hep::utils::angleAzimuthal(electron.getMomentum())); identified_electrons_pt->Fill(edm4hep::utils::magnitude(electron.getMomentum()));

// Get the scattered electron collections

const auto &scattered_electrons_truth = *(event->GetCollection<edm4eic::ReconstructedParticle>("ScatteredElectronsTruth")); const auto &scattered_electrons_EMinusPz = *(event->GetCollection<edm4eic::ReconstructedParticle>("ScatteredElectronsEMinusPz"));

// Truth scattered electrons

for (const auto electron : scattered_electrons_truth) {

scattered_electron_truth_pt->Fill(edm4hep::utils::magnitude(electron.getMomentum()));

// Scattered electrons with E - Pz

for (const auto electron : scattered_electrons_EMinusPz) {

scattered_electron_EMinusPz_pt->Fill(edm4hep::utils::magnitude(electron.getMomentum()));

All are subsets of ReconstructedParticles, so they share the same particle ID

Using the electron finder – Analysis Scripts

- Can be read with Podio reader
- Easily makes use of subcollections
- ✤ Working to develop C++ and Python examples
- ✤ Will add to presentation and snippets repository

Current limitations and next steps

Limitations

- ✤ Using truth information
- ✤ Using particles, not tracks
- ✤ No PID detector information utilized

Next Steps

- ✤ Use tracks, not particles
- Remove truth information dependency
 - Requires good track–cluster matching
- ✤ Incorporate PID information
- Feedback from analyzers what's missing? What can be improved?

Summary

- First pass of electron finder included in April release and simulation campaign!
- ✤ Truth algorithm for benchmarking, *E* − *p*_Z algorithm for more realistic ID
 ✤ More algorithms to come
- Next steps focus on moving away from using truth information
- ✤ Need feedback from users!
- Thanks to Daniel, Tyler, Markus, Wouter, and all others who helped with development and review!