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• Definition of classical Fermi function


• Effective theory and factorization


• Renormalization and anomalous dimension 


• Neutron beta decay and large pi resummation


• Summary



Fermi function

3

The classical Fermi function describes enhanced 
(huge!) QED corrections for electron/positron 
emission from large-Z nucleus 

σ ≈ F(Z, E) σ0

[A,Z] [A,Z+1]

e-

ν

F(Z, E) =
2(1 + η)

[Γ(2η + 1)]2
|Γ(η + iξ) |2 eπξ(2pr)2(η−1)

η = 1 − (Zα)2 ξ =
Zα
β



Fermi function
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In NR limit (not applicable to neutron and nuclear 
beta decay) the Fermi function reduces to the 
Sommerfeld factor 

F(Z, E) →
2πξ

1 − exp(−2πξ)
= 1 + πξ +

π2

3
ξ2 + …

η = 1 − β2ξ2 ≈ 1ξ =
Zα
β



Fermi function
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Several questions naturally arise: 

• what is the quantity r appearing in F(Z,E)?   
Approximately the nuclear radius, but how to go 
beyond this qualitative model?  (answer: 

 )r−1eγE = μMS

• how to combine with phenomenologically 
important subleading corrections?  (answer: 
factorization, EFT, symmetry relating different  
powers of Z at the same power of ) α

• what is the “Fermi function” for neutron beta decay, 
for which neither Z nor  is large?  (answer: RG 

analysis to resum  )

β−1

(iπ log
− ⃗p2 − i0

⃗p2 )
n

= π2n
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E. Fermi, An attempt of a theory 
of beta radiation. 1.

Z.Phys. 88 (1934) 

“a rough estimate shows that … “

⇒need a systematic understanding 

Fermi function

• what is the quantity r appearing in F(Z,E)?  

F(Z, E) =
2(1 + η)

[Γ(2η + 1)]2
|Γ(η + iξ) |2 eπξ(2pr)2(η−1)



7

• Subleading corrections are critical at the sub-per 
mille experimental precision.  How are these 
incorporated?

J. C. HARDY AND I. S. TOWNER PHYSICAL REVIEW C 102, 045501 (2020)

FIG. 3. (a) In the top panel are plotted the uncorrected experi-
mental f t values for the 15 precisely known superallowed transitions
as a function of the charge on the daughter nucleus. (b) In the bottom
panel, the corresponding Ft values are given; they differ from the f t
values by the inclusion of the correction terms δ′

R, δNS, and δC . The
horizontal gray band gives one standard deviation around the average
Ft value. All transitions are labeled by their parent nuclei.

be established with high precision. Relatively imprecise mea-
surements of the tiny Gamow-Teller branches, which must be
subtracted from 100%, are all that is required.

Not so for the decays of the Tz = −1 parents. They are
even-even nuclei that decay to odd-odd daughters, where 1+

states are available at low excitation energy. The Gamow-
Teller transitions to these states turn out to be strong enough to
compete with, and often surpass, the superallowed transitions.
This raises a serious experimental challenge: the intensity
of the Gamow-Teller branches—or the superallowed branch
itself—must be measured directly with high relative precision.
Considerable progress has been made in the last few years
in improving the measurements of superallowed branching
ratios from Tz = −1 parents, but they still cannot match the
precision of the Tz = 0 parents’ branching ratios.

The eight cases included in Fig. 5 are much more limited
by experiment. All but 66As and 70Br are Tz = −1 parents,
which will require very difficult measurements to arrive at
precise branching ratios. All but 18Ne and 30S are quite far
from stability and will be difficult to produce in sufficient
quantity for high statistical precision. Overall, the two most
advanced candidates are 18Ne and 30S but even they will

FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the 15 precisely measured
superallowed transitions used in the Ft-value average. The two bars
cut off with jagged lines at about 0.20% actually rise to 0.23%
for 62Ga and 0.29% for 74Rb. The bars for δ′

R and δC-δNS include
provision for systematic uncertainty as well as statistical. See text.
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FIG. 5. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the eight tabulated superallowed
transitions not known precisely enough to contribute to the Ft-value
average. The three bars cut off with jagged lines at about 4.0%
indicate that no useful experimental measurement has been made of
those parameters. The bars for δ′

R and δC-δNS include provision for
systematic uncertainty as well as statistical. See text.
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• Subleading corrections are critical at the sub-per 
mille experimental precision.  How are these 
incorporated?

Fermi function

Systematically perform renormalization analysis from 
scale of matching (  = ) to scale of process 
( ) 

μ Λnuclear
μ ∼ p ∼ me

μ
↑

me

Λnuclear
scale of matching to nuclear 
matrix element

scale of physical process 
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Fermi function

αL, Z2α2L ∼ α
1
2

Zα2L ∼ α
α2L, Z2α3L, Z4α4L ∼ α

3
2

➡  

➡  

➡  

Z2 ∼ L2 ≡ log2(Λ /m) ∼ α−1

convenient counting for nuclei determining Vud:

⇒ need three and four loops for per mille precision 



Factorization
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When matrix elements are computed for the beta 
decay process, large perturbative coefficients 
appear

α−1 ∼ log2 Λnuc

me
∼ Z2 ∼ 100

For example, super allowed nuclear beta decay 
provides most precise determination of Vud

δ |Vud | ∼ 3 × 10−4

Require high-order perturbative corrections, e.g. 

Z2α3 log
Λnuc.

me
∼ 102−6+1 = 10−3



Factorization
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Map the problem to effective field theory

[A,Z] [A,Z+1]

e-

ν

ℒeff = − 𝒞 (ϕ[A,Z+1]
v )*ϕ[A,Z]

v ēvμγμ(1 − γ5)νe + H . c .

 is four-velocity of the heavy nucleus, vμ = (1,0,0,0)
𝒞 ∼ GF



Factorization
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Resum large logarithms by renormalization group 
within a sequence of effective field theories

ℳ = ℳS(λIR)ℳH(m, p)ℳUV(ΛUV)

soft matrix element in heavy-heavy-heavy EFT

matching coefficient onto heavy-heavy-light EFT

matching coefficient onto heavy-heavy-heavy EFT



Factorization
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Consider the factorization at leading power in Z

Start with the Schrodinger Coulomb problem (i.e., 
NR limit)

ℳ =
∞

∑
n=0

ℳ(n) =
∞

∑
n=0

(2mZe2)n ∫
dDL1

(2π)D ∫
dDL2

(2π)D
⋯∫

dDLn

(2π)D

1
⃗L 2
1 + λ2

1

( ⃗L 1 − ⃗p)2 − ⃗p2 − i0

1

( ⃗L 1 − ⃗L 2)2 + λ2

1

( ⃗L 2 − ⃗p)2 − ⃗p2 − i0

⋯
1

( ⃗L n−1 − ⃗L n)2 + λ2

1

( ⃗L n − ⃗p)2 − ⃗p2 − i0
D = 3 − 2ϵ



Factorization
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At one loop:

ℳ(1) = 2mZe2 ∫
dDL1

(2π)D

1
⃗L 2 + λ2

1

( ⃗L − ⃗p)2 − ⃗p2 − i0
→

im
p

Ze2

4π (log
2p
λ

−
iπ
2 )

Decompose into momentum regions

ℳ = ℳSℳH = 1 + ℳ(1)
S + ℳ(1)

H + …

ℳ(1)
S = ∫

ddL1

(2π)d

Ze2

L2 + λ2

2m

−2 ⃗p ⋅ ⃗L − i0
=

iZα
β ( λ2

μ2 )
−ϵ

1
2ϵ

ℳ(1)
H = ∫

ddL
(2π)d

Ze2

L2

2m

( ⃗L − ⃗p)2 − p2 ⋅ ⃗L − i0
=

iZα
β ( −4p2

μ2 − i0 )
−ϵ

−1
2ϵ

Readily see that factorization holds through one-loop order
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A Loop integrals319

We collect here some results for loop integrals.320

A.1 Two loop integrals321

A.1.1 RP: [Scalar Integrals]322

Consider the two-loop integral over Euclidean d dimensional space,

J(a1, a2, a3, a4, a5) =

Z
ddK

(2⇡)d

Z
ddL

(2⇡)d
1

[K2]a1

1

[(p�K)2 � p2]a2

1

[L2]a3

1

[(p� L)2 � p2]a4

1

[(L�K)2]a5
(66)

Using that the integral of a total derivative vanishes in dimensional regularization, and inserting (@/@Ki)Ki and
(@/@Ki)Li under the integral, yields the following ”integration by parts” relation,

0 = d� a1 � a2 � 2a5 � a11
+(5�

� 3
�)� a22

+(5�
� 4

�) , (67)

where we use the shorthand m± to denote the raising or lowering indices in J , e.g. 2
±J(a1, a2, a3, a4, a5) =

J(a1, a2 ± 1, a3, a4, a5). In particular, for the RP: [onetwo-loop] integral appearing in Eq. (13),

J(0, 1, 1, 1, 1) =
1

d� 3
[J(0, 2, 1, 1, 0)� J(0, 2, 1, 0, 1)] , (68)

where the integrals on the right-hand side are recursively one-loop and are readily evaluated:

J(0, 2, 1, 1, 0) = (�p2 � i0)�1�2✏

"
�
�
1
2 + ✏

�

(4⇡)
3
2�✏

#2 ✓
�1

2✏

◆
, (69)

J(0, 2, 1, 0, 1) = (�p2 � i0)�1�2✏

"
�
�
1
2 + ✏

�

(4⇡)
3
2�✏

#2
�
�
1
2 � ✏

�2
�(1 + 2✏)�(�4✏)

�
�
1
2 + ✏

�
�(1� 2✏)�

�
1
2 � 3✏

� (70)

A.1.2 RP: [Vector and Tensor Integrals]323

In the evaluation of the hard function for a relativistic lepton we encounter both vector and tensor integrals

J [L,K]
i

(a1, a2, a3, a4, a5) =

Z
ddK

(2⇡)d

Z
ddL

(2⇡)d
1

[K2]a1

[Li,Ki]

[(p�K)2 � p2]a2

1

[L2]a3

1

[(p� L)2 � p2]a4

1

[(L�K)2]a5
, (71)

J [LK]
ij

(a1, a2, a3, a4, a5) =

Z
ddK

(2⇡)d

Z
ddL

(2⇡)d
1

[K2]a1

LiKj

[(p�K)2 � p2]a2

1

[L2]a3

1

[(p� L)2 � p2]a4

1

[(L�K)2]a5
; (72)

for the two-loop hard function, only the diagonal elements of the tensor integral, �ijJ
[LK]
ij

, are required.324

The only three-vector in the problem is p and this guarantees that Ji / pi. Dotting with pi, using simple partial
fraction identities, and the IBP recursion relations, Eq. (67) one can show that

J [L]
i

(0, 1, 1, 1, 1) =
p

2p2
[J(0, 1, 0, 1, 1)� J(0, 0, 1, 1, 1)] . (73)
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∫ dnx
∂

∂xi
f(x1, x2, …, xn) = 0

Remember an integration identity

Apply this to Feynman diagram integrals, 

∂
∂Ki

Ki ∂
∂Ki

LiInsert:

E.g., apply this to J(0,1,1,1,1):

⏟simpler integrals 

Factorization
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• Even with the tricks of dimensional regularization, 
these integrals become increasing difficult at high 
loop order: 4 loops, 5, loops, etc.   

• How about 48 loops?

We can continue to higher order,

ℳ(2)
H = ∫

ddL1

(2π)d ∫
ddL2

(2π)d

Ze2

L2
1

2m

( ⃗L 1 − ⃗p)2 − p2 − i0

Ze2

( ⃗L 1 − ⃗L 2)2

2m

( ⃗L 2 − ⃗p)2 − p2 − i0
= (2mZe2)2 J(0,1,1,1,1)

= [ iZα
β

(−4p2 /μ2 − i0)−ϵ]
2

[ 1
8ϵ2

+
π2

12 ]

ℳ(3)
H = [ iZα

β
(−4p2 /μ2 − i0)−ϵ]

3

[ −1
48ϵ3

−
π2

24ϵ
−

13ζ(3)
6 ]

Factorization
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3.5 Wavefunction solution and all-orders hard function125

We recognize Eq. (5) as the perturbative expansion of the wavefunction evaluated at x = 0 for a particle scattered
by a Coulomb source and described by the Hamiltonian,

H =
p2

2m
�

Z↵

r
e��r . (22)

The all-orders solution at leading power is (see appendix) ,

M = [ (�)(0)]⇤ = �

✓
1�

iZ↵

�

◆
exp


Z↵

�

✓
⇡

2
+ i log

2p

�
� i�E

◆�
+O

✓
�

p

◆
(23)

where  (�) denotes the scattering solution that matches asymptotically to a plane wave plus an ingoing spherical
wave. Thus

MH(µ) =
M

MS(µ)
= �

✓
1�

iZ↵

�

◆
exp


Z↵

�

✓
⇡

2
+ i log

2p

µ
� i�E

◆�
(24)

This result reproduces the above results through three-loop order.126

3.6 Interpretations127

Before turning to the Dirac-Coulomb problem, let us note the following. First, upon replacing m ! E, the128

amplitudes Eq. (5) can be identified with those for a relativistic charged scalar scattering from a Coulomb source129

RP: [This is wrong, because there are seagull graphs for a relativistic scalar.] . Alternatively, the amplitudes130

(with m = E) can be identified with a ”soft-photon approximation” to the case of a relativistic charged fermion,131

(for numerators appearing in Feynman diagram amplitudes, ū(p)�0(/p � /L) + m) ! 2p0 = 2E, where L is a loop132

momentum); we return to this problem without approximation in the next section. Second, the starting point133

Eq. (5) corresponds to photon attachments to a charge Z source in both initial and final states. This is di↵erent134

from e.g. neutron beta decay with Z = 0 for the initial neutron and Z = 1 for the final proton; the amplitudes135

become the same in the nonrelativistic limit.136

4 Dirac-Coulomb problem137

In place of Eq. (5), let us consider the amplitudes for a relativistic fermion in RP: [the Coulomb field of an extend

object, whose charge density ⇢(x) results in a charge form factor F (L2
)] ,

ū(p)M =
1X

n=0

(Ze2)n
Z

ddL1

(2⇡)d

Z
ddL2

(2⇡)d
· · ·

Z
ddLn

(2⇡)d
⇥

⇥
F (L2

1)

L2
1 + �2

1

(L1 � p)2 � p2 � i0

F ((L1 � L2)2)

(L1 � L2)2 + �2
1

(L2 � p)2 � p2 � i0
· · ·⇥

⇥
F ((Ln�1 � Ln�2)2)

(Ln�1 � Ln)2 + �2
1

(Ln � p)2 � p2 � i0

⇥ ū(p)�0(/p� /L1 +m)�0(/p� /L2 +m) · · · �0(/p� /Ln +m) . (25)

For F = 1, E = m and /p� /Li +m ! /p+m, the amplitude reduces to Eq. (5). The fermionic case Eq. (25) involves138

di↵erent Dirac structures, and a dependence on UV momentum scales |L| � p.139

Let us first consider the case F = 1. Similar to the Schrodinger-Coulomb case, we consider the low-order
contributions. At one-loop, at �! 0,

M
(1) = 2EZe2

Z
ddL

(2⇡)d
1

L2 + �2
1

(L� p)2 � p2 � i0


1�

1

2E
�0/L

�

=
iZ↵

�

✓
log

2p

�
�

i⇡

2

◆
+

✓
m�0

E
� 1

◆✓
�
1

2

◆�
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3.5 Wavefunction solution and all-orders hard function125

We recognize Eq. (5) as the perturbative expansion of the wavefunction evaluated at x = 0 for a particle scattered
by a Coulomb source and described by the Hamiltonian,

H =
p2

2m
�

Z↵

r
e��r . (22)

The all-orders solution at leading power is (see appendix) ,

M = [ (�)(0)]⇤ = �

✓
1�

iZ↵

�

◆
exp


Z↵

�

✓
⇡

2
+ i log

2p

�
� i�E

◆�
+O

✓
�

p

◆
(23)

where  (�) denotes the scattering solution that matches asymptotically to a plane wave plus an ingoing spherical
wave. Thus

MH(µ) =
M

MS(µ)
= �

✓
1�

iZ↵

�

◆
exp


Z↵

�

✓
⇡

2
+ i log

2p

µ
� i�E

◆�
(24)

This result reproduces the above results through three-loop order.126

3.6 Interpretations127

Before turning to the Dirac-Coulomb problem, let us note the following. First, upon replacing m ! E, the128

amplitudes Eq. (5) can be identified with those for a relativistic charged scalar scattering from a Coulomb source129

RP: [This is wrong, because there are seagull graphs for a relativistic scalar.] . Alternatively, the amplitudes130

(with m = E) can be identified with a ”soft-photon approximation” to the case of a relativistic charged fermion,131

(for numerators appearing in Feynman diagram amplitudes, ū(p)�0(/p � /L) + m) ! 2p0 = 2E, where L is a loop132

momentum); we return to this problem without approximation in the next section. Second, the starting point133

Eq. (5) corresponds to photon attachments to a charge Z source in both initial and final states. This is di↵erent134

from e.g. neutron beta decay with Z = 0 for the initial neutron and Z = 1 for the final proton; the amplitudes135

become the same in the nonrelativistic limit.136

4 Dirac-Coulomb problem137

In place of Eq. (5), let us consider the amplitudes for a relativistic fermion in RP: [the Coulomb field of an extend

object, whose charge density ⇢(x) results in a charge form factor F (L2
)] ,

ū(p)M =
1X
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(Ze2)n
Z
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· · ·
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⇥
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1)

L2
1 + �2
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(L1 � p)2 � p2 � i0

F ((L1 � L2)2)

(L1 � L2)2 + �2
1
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For F = 1, E = m and /p� /Li +m ! /p+m, the amplitude reduces to Eq. (5). The fermionic case Eq. (25) involves138

di↵erent Dirac structures, and a dependence on UV momentum scales |L| � p.139

Let us first consider the case F = 1. Similar to the Schrodinger-Coulomb case, we consider the low-order
contributions. At one-loop, at �! 0,

M
(1) = 2EZe2

Z
ddL

(2⇡)d
1

L2 + �2
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(L� p)2 � p2 � i0
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iZ↵
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3.5 Wavefunction solution and all-orders hard function125

We recognize Eq. (5) as the perturbative expansion of the wavefunction evaluated at x = 0 for a particle scattered
by a Coulomb source and described by the Hamiltonian,

H =
p2

2m
�

Z↵

r
e��r . (22)

The all-orders solution at leading power is (see appendix) ,

M = [ (�)(0)]⇤ = �

✓
1�

iZ↵

�

◆
exp


Z↵

�

✓
⇡

2
+ i log

2p

�
� i�E

◆�
+O

✓
�

p

◆
(23)

where  (�) denotes the scattering solution that matches asymptotically to a plane wave plus an ingoing spherical
wave. Thus

MH(µ) =
M

MS(µ)
= �
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iZ↵
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◆
exp
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⇡
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2p

µ
� i�E

◆�
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This result reproduces the above results through three-loop order.126
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Before turning to the Dirac-Coulomb problem, let us note the following. First, upon replacing m ! E, the128

amplitudes Eq. (5) can be identified with those for a relativistic charged scalar scattering from a Coulomb source129

RP: [This is wrong, because there are seagull graphs for a relativistic scalar.] . Alternatively, the amplitudes130

(with m = E) can be identified with a ”soft-photon approximation” to the case of a relativistic charged fermion,131

(for numerators appearing in Feynman diagram amplitudes, ū(p)�0(/p � /L) + m) ! 2p0 = 2E, where L is a loop132

momentum); we return to this problem without approximation in the next section. Second, the starting point133

Eq. (5) corresponds to photon attachments to a charge Z source in both initial and final states. This is di↵erent134

from e.g. neutron beta decay with Z = 0 for the initial neutron and Z = 1 for the final proton; the amplitudes135

become the same in the nonrelativistic limit.136

4 Dirac-Coulomb problem137

In place of Eq. (5), let us consider the amplitudes for a relativistic fermion in RP: [the Coulomb field of an extend

object, whose charge density ⇢(x) results in a charge form factor F (L2
)] ,

ū(p)M =
1X

n=0

(Ze2)n
Z

ddL1

(2⇡)d

Z
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⇥
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For F = 1, E = m and /p� /Li +m ! /p+m, the amplitude reduces to Eq. (5). The fermionic case Eq. (25) involves138

di↵erent Dirac structures, and a dependence on UV momentum scales |L| � p.139

Let us first consider the case F = 1. Similar to the Schrodinger-Coulomb case, we consider the low-order
contributions. At one-loop, at �! 0,

M
(1) = 2EZe2

Z
ddL

(2⇡)d
1

L2 + �2
1

(L� p)2 � p2 � i0
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1
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�0/L
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=
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At ✏ ! 0, it is readily seen that

M
(1) = M

(1)
S

+M
(1)
H

. (12)

At second order,

M
(2)
H

=

Z
ddL1

(2⇡)d

Z
ddL2

(2⇡)d
1

L2
1

1

(L1 � p)2 � p2 � i0

1

(L1 � L2)2
1

(L2 � p)2 � p2 � i0

= 2mZe2 J(0, 1, 1, 1, 1)

=


iZ↵̄

�
(�4p2/µ2

� i0)�✏

�2  1

8✏2
+

⇡2

12
+ 5⇣(3)✏+O(✏2)

�
, (13)

where the integral J(a1, a2, a3, a4, a5) is defined and evaluated in the appendix. At three loops, we find

M
(3)
H

=

Z
ddL1

(2⇡)d

Z
ddL2

(2⇡)d

Z
ddL3

(2⇡)d
1

L2
1

1

(L1 � p)2 � p2 � i0

1

(L1 � L2)2
1

(L2 � p)2 � p2 � i0
⇥

⇥
1

(L2 � L3)2
1

(L3 � p)2 � p2 � i0

=


iZ↵̄

�
(�4p2/µ2

� i0)�✏

�3 
�1

48✏3
�

⇡2

24✏
�

13⇣(3)

6
+O(✏)

�
. (14)

The evaluation of this integral is performed in the appendix. At higher-loop order, direct evaluation of integrals121

becomes increasingly di�cult. We will see how wavefunction methods provide a closed-form expression for arbitrary122

loop order, reducing to Eqs. (10), (13) and (14) at lowest loop orders.123

3.4 Renormalization124

Before turning to the all-orders discussion, we present the renormalized hard matching coe�cient in MS scheme.
Identifying the above amplitudes as bare matching coe�cients, MH ⌘ M

bare
H

, writing

M
bare
H

= Z
�1

MH(µ) , (15)

and requiring that Z(µ) has only 1/✏ terms, we find

Z
�1 = 1 +

1X

n=1

✓
Z↵̄

�

◆n

z(n) , (16)

with

z(1) =
�i

2✏
, z(2) =

�1

8✏2
, z(3) =

i

48✏3
. (17)

The renormalized matching coe�cient (at ✏ = 0) is then

MH(µ) = 1 +
Z↵

�

✓
⇡

2
+ i log

2p

µ

◆
+

✓
Z↵

�

◆2 ✓⇡2

24
+

i⇡

2
log

2p

µ
�

1

2
log2

2p

µ

◆

+

✓
Z↵

�

◆3 ✓
�
⇡3

48
�

i⇣(3)

3
+

i⇡2

24
log

2p

µ
�

⇡

4
log2

2p

µ
�

i

6
log3

2p

µ

◆
+O(↵4) . (18)

Since the productMSMH is UV and IR finite (at � 6= 0), the quantity Z is identical to the operator renormalization
constant for the soft operator,

M
bare
S

= ZMS(µ) . (19)

From the explicit form of Eqs. (8) and (9), the renormalization constant to all orders is given by

Z = exp

✓
iZ↵̄

2�✏

◆
, (20)

in agreement through three-loop order with Eq. (17). The renormalized soft function is

MS(µ) = exp

✓
iZ↵

�
log

µ

�

◆
(21)

6

Return to the position-space picture

Solve for wavefunction

Since we know the soft function to all orders (exponentiation), 
we also know the hard function to all orders: 

(check: matches with order by order results)

Explicit, all-orders factorization.

Factorization
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Factorization

Wavefunction computation

Recall the Lippmann-Schwinger equation and Born 
series,

ψ (±)
⃗p

( ⃗x) = ⟨ ⃗x |(1 +
1

E − Ĥ0 ± i0
̂V +

1
E − Ĥ0 ± i0

̂V
1

E − Ĥ0 ± i0
̂V + …) | ⃗p⟩

V( ⃗x) = (−Ze2)
exp(−λ | ⃗x | )

4π | ⃗x |

Coulomb with massive photon, 

Ṽ( ⃗L ) =
−Ze2

⃗L 2 + λ2

ψ (±)
⃗p

( ⃗x) = ei ⃗p⋅ ⃗x[1 + ∫
d3L

(2π)3
ei ⃗L ⋅ ⃗x −2m

2 ⃗p ⋅ ⃗L + ⃗L 2 ∓ i0
Ṽ( ⃗L )

+∫
d3L1

(2π)3

d3L2

(2π)3
ei ⃗L 2⋅ ⃗x −2m

2 ⃗p ⋅ ⃗L 2 + ⃗L 2
2 ∓ i0

Ṽ( ⃗L 2 − ⃗L 1)
−2m

2 ⃗p ⋅ ⃗L 1 + ⃗L 2
1 ∓ i0

Ṽ( ⃗L 1) + …]
We require ψ (−)

⃗p
(0⃗)
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Factorization

Let us solve the Schrodinger equation, 

[−
1

2m
∇2 −

Zα
r

e−λr] ψ( ⃗x) =
⃗p2

2m
ψ( ⃗x)

Write
ψ ⃗p( ⃗x; λ) = ei ⃗p⋅ ⃗xF ⃗p( ⃗x, λ)

[−
1
2

∇2 − i ⃗p ⋅ ∇ −
mZα

r
e−λr] F( ⃗x) = 0

Then

For r ≪ λ−1

[−
1
2

∇2

p2
− i

̂ ⃗p ⋅ ⃗∇
p

−
ξ
pr ] F< = 0 F(+)

< ( ⃗x) = N(p, λ) 1F1( iξ,1,ip(r − z) )

For r ≫ p−1

[−i
̂ ⃗p ⋅ ⃗∇
λ

−
ξ
λr

e−λr] F> = 0 F(+)
> ( ⃗x) = exp[iξ∫

z

−∞
dz′ ,

e−λ z′ 2 + r2 − z2

z′ 2 + r2 − z2 ]
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Factorization

In the overlap region,  , both solutions 
apply,

p−1 ≪ r ≪ λ−1

F(+)
< → N(p, λ)

1
Γ(1 − iξ)

exp{ −
πξ
2

− iξ log[p(r − z)]} ,

F(+)
> → exp{iξ [−log

λ(r − z)
2

− γE]}
Enforcing equality determines , and then N(p, λ)

ψ (+)
⃗p

( ⃗x = 0) = N(p, λ) = Γ(1 − iξ)exp{ π
2

ξ + iξ [log
2p
λ

− γE]}
Recall that this all-orders amplitude, combined with 
the all-orders soft function, determines the all-orders 
hard function
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3.5 Wavefunction solution and all-orders hard function125

We recognize Eq. (5) as the perturbative expansion of the wavefunction evaluated at x = 0 for a particle scattered
by a Coulomb source and described by the Hamiltonian,

H =
p2

2m
�

Z↵

r
e��r . (22)

The all-orders solution at leading power is (see appendix) ,

M = [ (�)(0)]⇤ = �

✓
1�

iZ↵

�

◆
exp


Z↵

�

✓
⇡

2
+ i log

2p

�
� i�E

◆�
+O

✓
�

p

◆
(23)

where  (�) denotes the scattering solution that matches asymptotically to a plane wave plus an ingoing spherical
wave. Thus

MH(µ) =
M

MS(µ)
= �

✓
1�

iZ↵

�

◆
exp


Z↵

�

✓
⇡

2
+ i log

2p

µ
� i�E

◆�
(24)

This result reproduces the above results through three-loop order.126

3.6 Interpretations127

Before turning to the Dirac-Coulomb problem, let us note the following. First, upon replacing m ! E, the128

amplitudes Eq. (5) can be identified with those for a relativistic charged scalar scattering from a Coulomb source129

RP: [This is wrong, because there are seagull graphs for a relativistic scalar.] . Alternatively, the amplitudes130

(with m = E) can be identified with a ”soft-photon approximation” to the case of a relativistic charged fermion,131

(for numerators appearing in Feynman diagram amplitudes, ū(p)�0(/p � /L) + m) ! 2p0 = 2E, where L is a loop132

momentum); we return to this problem without approximation in the next section. Second, the starting point133

Eq. (5) corresponds to photon attachments to a charge Z source in both initial and final states. This is di↵erent134

from e.g. neutron beta decay with Z = 0 for the initial neutron and Z = 1 for the final proton; the amplitudes135

become the same in the nonrelativistic limit.136

4 Dirac-Coulomb problem137

In place of Eq. (5), let us consider the amplitudes for a relativistic fermion in RP: [the Coulomb field of an extend

object, whose charge density ⇢(x) results in a charge form factor F (L2
)] ,

ū(p)M =
1X

n=0

(Ze2)n
Z

ddL1

(2⇡)d

Z
ddL2

(2⇡)d
· · ·

Z
ddLn

(2⇡)d
⇥

⇥
F (L2

1)

L2
1 + �2

1

(L1 � p)2 � p2 � i0

F ((L1 � L2)2)

(L1 � L2)2 + �2
1

(L2 � p)2 � p2 � i0
· · ·⇥

⇥
F ((Ln�1 � Ln�2)2)

(Ln�1 � Ln)2 + �2
1

(Ln � p)2 � p2 � i0

⇥ ū(p)�0(/p� /L1 +m)�0(/p� /L2 +m) · · · �0(/p� /Ln +m) . (25)

For F = 1, E = m and /p� /Li +m ! /p+m, the amplitude reduces to Eq. (5). The fermionic case Eq. (25) involves138

di↵erent Dirac structures, and a dependence on UV momentum scales |L| � p.139

Let us first consider the case F = 1. Similar to the Schrodinger-Coulomb case, we consider the low-order
contributions. At one-loop, at �! 0,

M
(1) = 2EZe2

Z
ddL

(2⇡)d
1

L2 + �2
1

(L� p)2 � p2 � i0


1�

1

2E
�0/L

�

=
iZ↵

�

✓
log

2p

�
�

i⇡

2

◆
+

✓
m�0

E
� 1

◆✓
�
1

2

◆�
. (26)
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Similar to Eq. (7), we can express the result, up to �/E power corrections as the product of soft and hard factors,
with MS as in Eq. (9), and MH now contains two possible Dirac structures,

MH = MH1 +

✓
m�0

E
� 1

◆
MH2 , (27)

where at tree level,

M
(0)
H1 = 1 , M

(0)
H2 = 0 , (28)

and at one loop,

M
(1)
H1 =


iZ↵̄

�
(�4p2/µ2

� i0)�✏

� 
�1

2✏

�
, M

(1)
H2 =


iZ↵̄

�
(�4p2/µ2

� i0)�✏

� 
1

2(1� 2✏)

�
. (29)

At two loop order, using integrals from Appendix A, RP: [Is there an exponent missing for M(2)
H2? ]

M
(2)
H1 =


iZ↵̄

�
(�4p2/µ2

� i0)�✏

�2  1

8✏2
+

⇡2

12
+ �2

✓
�1

8✏
�

5

4

◆
+O(✏)

�
,

M
(2)
H2 =


iZ↵̄

�
(�4p2/µ2

� i0)�✏

� 
�1

4✏
�

1

2
+O(✏)

�
. (30)

4.1 Factorization140

The product MSMH is not UV finite beginning at two loop order. From Eq. (25), we recognize that integrals
are UV divergent by power counting. Regulating UV divergences with F (Q2) introduces a new UV scale, and a
corresponding momentum region in loop diagrams with |L| ⇠ ⇤UV � p. The factorization formula is thus

M = MSMHMUV . (31)

4.2 UV contribution from a charge form factor141

In dimensional regularization, the factor MUV is computed by setting � = p = 0. For simplicity, we take

F (L2) =
⇤2
UV

⇤2
UV + L2

. (32)

At one loop order,

M
(1)
UV = Ze2

Z
ddL

(2⇡)d
F (L2)

(L2)2
�0� · L = 0 . (33)

Nontrivial contributions begin at two-loop order,

M
(2)
UV = (Ze2)2

Z
ddL1

(2⇡)d

Z
ddL2

(2⇡)d
F (L2

1)

(L2
1)

2

F ((L1 � L2)2)

L2
2(L1 � L2)2

�0� · L1�
0� · L2

=
h
Z↵̄ (µ/2⇤UV)

2✏
i2 �1

8✏
�

1

2
�

1

2
log 2 +O(✏)

�
. (34)

With the inclusion of MUV, the product Eq. (31) is UV finite, with a dependence on the UV scale ⇤.142

In the MS scheme, the renormalized soft function is again given by Eq. (21),

MS(µS) = 1 +
iZ↵

�
log

µS

�
�

(Z↵)2

2�2
log2

µS

�
+O(↵3) (35)

The renormalized hard function through two loop order is

MH(µS , µH) = 1 +
Z↵

�


i

✓
log

2p

µS

�
i⇡

2

◆
+

i

2

⇣m
E
�0

� 1
⌘�

+

✓
Z↵

�

◆2 ⇢
�⇡2

12
�

1

2

✓
log

2p

µS

�
i⇡

2

◆2

�
1

2

✓
log

2p

µS

�
i⇡

2

◆⇣m
E
�0

� 1
⌘
+


5

4
�

1

2

✓
log

2p

µH

�
i⇡

2

◆�
�2

�
+O(↵3) , (36)

and the renormalized UV function is

MUV(µ) = 1 + (Z↵)2

�

1

2
�

1

2
log

µH

⇤UV

�
(37)
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Extend the factorization formalism to field theory: full 
QED with relativistic and quantum corrections for the 
electron

at one loop: two relevant momentum regions,  
(hard) and  (soft) 

L ∼ p
L ∼ λ

at two loops: contributions from  L ≫ p

General factorization formula:

Factorization
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Using asymptotic wavefunction methods, can extract 
hard function to all orders:

ℳH(μS, μH) = ℳ−1
S (μS) ℳ ℳ−1

UV(μH)

ℳH = exp [iξ log
2pe−γE

μS
− i(η − 1)

π
2 ] 2Γ(η − iξ)

Γ(2η + 1)
η − iξ

1 − iξ m
E

E + ηm
E + m

2η
1 + η

×

× ( 2pe−γE

μH )
η−1

[ 1 + γ0

2
+

E + m
E + ηm (1 − iξ

m
E ) 1 − γ0

2 ]
ξ =

Zα
β

η = 1 − (Zα)2

⇒ explicit, all-orders factorization (!)

ℳ = ℳS(λ/μ)ℳH(p/μ)ℳUV(Λ /μ)

Factorization



Factorization
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With the explicit factorization formula, 

• what is the quantity r appearing in F(Z,E)?   
Approximately the nuclear radius, but how to 
beyond this qualitative model?  answer: 
renormalization scale

r−1eγE = μMS

• what is F(Z,E) as a field theory object?  answer: 
leading-in-Z hard function

⟨ |ℳH |2 ⟩ = F(Z, E)
rH

×
4η

(1 + η)2

ℳH = exp [iξ log
2pe−γE

μS
− i(η − 1)

π
2 ] 2Γ(η − iξ)

Γ(2η + 1)
η − iξ

1 − iξ m
E

E + ηm
E + m

2η
1 + η

×

× ( 2pe−γE

μH )
η−1

[ 1 + γ0

2
+

E + m
E + ηm (1 − iξ

m
E ) 1 − γ0

2 ]
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Renormalization

When matrix elements are computed for the beta 
decay process, large perturbative coefficients 
appear

α−1 ∼ log2 Λnuc

me
∼ Z2 ∼ 100

Account for log enhancements by RG evolution

d log C
d log μ

∼

α (Z + 1)
+α2 (Z2 + Z + 1)

+α3 (Z3 + Z2 + Z + 1)
+α4 (Z4 + Z3 + Z2 + Z + 1)

Leading Z given by Dirac equation/Fermi function analysis

Z=0 limit given by heavy-light current operator

Subleading Z determined by leading Z (new!) using heavy particle symmetry



25

Renormalization

Symmetry argument 

= [⋯
(−eQe)( /L1 + /L2)γμ2

(L1 + L2)2 + i0
(−eQe) /L1γμ1

L2
1 + i0 ]

[⋯
−eQAvν2

v ⋅ (K1 + K2) + i0
−eQAvν1

v ⋅ K1 + i0 ]
[⋯

−eQBvρ1

v ⋅ (−P1) + i0
−eQBvρ2

v ⋅ (−P1 − P2) + i0 ]
sum over diagrams is invariant under  , QA ↔ QB
Qe → − Qe
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Renormalization

See that e.g. 

and in the sum over diagrams at a fixed order in , 
the amplitude is invariant 

α

Can see that the anomalous dimension must be 
built from 

Q2
e , QAQB , Qe(QA − QB)

In particular, with Qe = − 1 , QA = Z + 1 , QB = Z

Zi(Z + 1)i , 2i ≤ n

the anomalous dimension at n loop order is a linear 
combination of 
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Renormalization

d log C
d log μ

∼

α (Z + 1)
+α2 (Z2 + Z + 1)
+α3 (Z3 + Z2 + Z + 1)
+α4 (Z4 + Z3 + Z2 + Z + 1)

→

α (1)
+α2 (Z(Z + 1) + 1)
+α3 (#Z(Z + 1) + 1)
+α4 (Z2(Z + 1)2 + #Z(Z + 1) + 1)

we calculate this number 

remaining undetermined coefficient at 4 loops



γ(1)
1 = γ(0)

1 = − 8π2 γ(2)
2 = γ(1)

2

γ(1)
2

γ(1)
3 = 2γ(0)

3

γ(2)
3

γ(3)
3 = γ(2)

3 − γ(0)
3
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γ =
d log 𝒞
d log μ

=
∞

∑
n=0

n+1

∑
i=0

( α
4π )

n+1

γ(i)
n Zn+1−i ≡ γ(0)(Zα) + αγ(1)(Zα) + …



γ(1)
1 = γ(0)

1 = − 8π2 γ(2)
2 = γ(1)

2

γ(1)
2

γ(1)
3 = 2γ(0)

3

γ(2)
3

γ(3)
3 = γ(2)

3 − γ(0)
3
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• no contributions  with Zmαn m > n

γ =
d log 𝒞
d log μ

=
∞

∑
n=0

n+1

∑
i=0

( α
4π )

n+1

γ(i)
n Zn+1−i ≡ γ(0)(Zα) + αγ(1)(Zα) + …



γ(1)
1 = γ(0)

1 = − 8π2 γ(2)
2 = γ(1)

2

γ(1)
2

γ(1)
3 = 2γ(0)

3

γ(2)
3
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3
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• no contributions  with Zmαn m > n
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d log μ

=
∞
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γ(i)
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• no contributions  with Zmαn m > n

• leading Dirac solution

γ =
d log 𝒞
d log μ

=
∞

∑
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n+1
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( α
4π )
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n Zn+1−i ≡ γ(0)(Zα) + αγ(1)(Zα) + …
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• no contributions  with Zmαn m > n

• leading Dirac solution
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• no contributions  with Zmαn m > n

• leading Dirac solution

• Z=0 limit (heavy-light current)
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• no contributions  with Zmαn m > n

• leading Dirac solution

• Z=0 limit (heavy-light current)
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• no contributions  with Zmαn m > n

• leading Dirac solution

• Z=0 limit (heavy-light current)

• symmetry linking different powers of Z
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d log 𝒞
d log μ
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• no contributions  with Zmαn m > n

• leading Dirac solution

• Z=0 limit (heavy-light current)

• symmetry linking different powers of Z
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d log 𝒞
d log μ
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∞
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• no contributions  with Zmαn m > n

• leading Dirac solution

• Z=0 limit (heavy-light current)

• symmetry linking different powers of Z

• remaining:  and Z2α3 Z2α4
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• no contributions  with Zmαn m > n

• leading Dirac solution

• Z=0 limit (heavy-light current)

• symmetry linking different powers of Z

• remaining:  and Z2α3 Z2α4
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d log μ
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∞
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• no contributions  with Zmαn m > n

• leading Dirac solution

• Z=0 limit (heavy-light current)

• symmetry linking different powers of Z

• remaining:  and Z2α3 Z2α4

⇒ need  as missing ingredient for permille level analysis of beta 

decay

γ(1)
2

γ =
d log 𝒞
d log μ

=
∞

∑
n=0

n+1

∑
i=0

( α
4π )

n+1

γ(i)
n Zn+1−i ≡ γ(0)(Zα) + αγ(1)(Zα) + …
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Renormalization

To isolated powers of Z, it is convenient to rearrange 
the perturbation series 

[Z+1] [Z]

1

ℒ = h̄(A)
v (iv ⋅ ∂ + e(Z + 1)v ⋅ A)h (A)

v + h̄(B)
v (iv ⋅ ∂ + eZv ⋅ A)h (B)

v

+GF h (B)
v Γh (A)

v ν̄Γ′ e

h (A)
v = Svh (A0)

v h (B)
v = Svh (B0)

v

ℒ = h̄(A0)
v (iv ⋅ ∂ + ev ⋅ A)h (A0)

v + h̄(B)
v iv ⋅ ∂h (B)

v

+GF S†
v Sv h (B0)

v Γh (A0)
v ν̄Γ′ e

Introduce Wilson line field redefinition to (almost) 
decouple photons from heavy particles
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Renormalization

[1]

1

[Z]

Sv(x) = exp [iZe∫
0

−∞
ds v ⋅ A(x + sv)] = exp [iZe ( i

iv ⋅ ∂ + i0
v ⋅ A)]

S†
v Sv = exp [iZe (2πδ(iv ⋅ ∂)v ⋅ A)]

Equivalent picture in terms of charge 1 heavy 
particle in background charge Z field

Simplified calculation at fixed Z, and useful/
interesting relations between different powers of Z 
obtained by equating the two pictures
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Renormalization

With this rearrangement, 3-loop computation 
reduced to 10 diagrams 
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basic idea: 

• reduce to basis integrals

• remaining integrals reduced to previous step using integration by 
parts identities

• subset of integrals involving two momentum 
differences, evaluated by 

1) use that  (IR regulator) is the only scaleλ

I ∼ λ−6ϵ ⟹ I =
−1
6ϵ

λ
d

dλ
I

2) isolate and evaluate sub divergences 

3) evaluate remaining finite coefficient of  at 1/ϵ ϵ → 0



γ(1)
1 = γ(0)

1 = − 8π2 γ(2)
2 = γ(1)

2

γ(1)
2 = 16π2 (6 −

π2

3 )
γ(1)
3 = 2γ(0)

3

γ(2)
3

γ(3)
3 = γ(2)

3 − γ(0)
3
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γ(1)
1 = γ(0)

1 = − 8π2 γ(2)
2 = γ(1)

2

γ(1)
2 = 16π2 (6 −

π2

3 )
γ(1)
3 = 2γ(0)

3

γ(2)
3

γ(3)
3 = γ(2)

3 − γ(0)
3
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• we disagree with an old result in the literature [Jaus and Rasche, 
PRD 35, 3420 (1987)].  Only diagrams (a), (b), (c) considered.  
Unregulated subdivergences.  
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Implications

Numerically important modifications to nuclear beta 
decay rates

Current implementations of three-loop corrections 
based on “heuristic ansatz” of Sirlin and Zucchini,  
which incorporated (incorrect) log-enhanced term of 
Jaus and Rasche

RC = (1 + δ′ R)(1 + ΔV
R)(1 + δNS − δC)

table gives shift in “  ”δ′ R
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The case Z=0

The Fermi function can be motivated by large Z or 
small velocity.  Neutron beta decay has neither. 

The one-loop correction, and a Fermi function 
ansatz for higher-order corrections, exhibit large 
perturbative corrections.  Where would these come 
from?
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"Sirlin g function”

[very long (f)] x [long (g)] x [hadronic] x [electroweak]

ℳS ℳUVℳH
⏟

Previous treatments have not separated scales

“Fermi function”

The usual Fermi function does not apply to neutron 
beta decay (Z=0).  Differences starting at two loop 
order

The case Z=0
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The case Z=0

Note the presence of a new “scale”, associated with 
the time-like process of electron+proton production

ℳ(1)
H = [ iZα

β
(−4p2/μ2 − i0)−ϵ] [ −1

2ϵ ]

ℳ(2)
H = [ iZα

β
(−4p2/μ2 − i0)−ϵ]

2

[ 1
8ϵ2

+
π2

12
+ 5ζ(3)ϵ + 𝒪(ϵ2)]

ℳ(3)
H = [ iZα

β
(−4p2/μ2 − i0)−ϵ]

3

[ −1
48ϵ3

−
π2

24ϵ
−

13ζ(3)
6

+ 𝒪(ϵ)]

Recall the hard function for the Schrodinger-
Coulomb problem (similar for Dirac-Coulomb), 

Idea: resum large logarithms associated with the 
ratio of scales: 

iπ log
− ⃗p2 − i0

⃗p2
= π2 ≈ 10
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These logarithms are associated with the 
dependence on soft factorization scale  , μS

The case Z=0 ℳ = ℳS(λ/μS)ℳH(p/μS, p/μH)ℳUV(Λ /μH)

Scale dependence determined by soft anomalous 
dimension, known to all orders (heavy-heavy cusp 
anomalous dimension for electron-proton system)

ℳH(μS+) = eiαϕβ exp[ πα
2β ]ℳH(μ2

S−) μS± = ± 4 ⃗p2 − i0

irrelevant phase

enhancement factor

“normal” perturbative series, without large logs
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The case Z large
A different counting is needed when Z becomes large 
(e.g. Pb or U)

Z ∼ L2 ≡ log2(Λ /m) ∼ α−1

α− 1
2 α0 α

1
2

⇒ need all (or at least high) orders for  and  to 
go beyond O(1)

γ(0) γ(1)

γ =
∞

∑
n=0

n+1

∑
i=0

( α
4π )

n+1

γ(i)
n Zn+1−i ≡ γ(0)(Zα) + αγ(1)(Zα) + …
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The case Z large

 is known to all orders (Dirac limit):γ(0)

γ(0) = 1 − (Zα)2 − 1

A simple “exploratory spirit” ansatz for  was 
previously used [Wilkinson 1997]*

γ(1)

γ(1) = −
1
2 [(Zα) + 0.57(Zα)2 + 0.50

(Zα)3

1 − (Zα) ]
= −

1
2

(Zα) − 0.28(Zα)2 − 0.25 [(Zα)3 + (Zα)5 + (Zα)7 + …]
−0.25 [(Zα)4 + (Zα)6 + (Zα)8 + …]

We now know 

γ(1)
odd =

1
2

∂
∂(Zα)

γ(0) =
−Zα

2 1 − (Zα)2

= −
1
2

(Zα) −
1
4

(Zα)3 −
3

16
(Zα)5 −

5
32

(Zα)7 + …

* 0.50 ≈ (0.48 + 1 + 0.57 + 0.16)/4

γ(1)
even =

(Zα)2

(4π)3
γ(1)
2 + … = 0.216 (Zα)2 + …



41

Summary

• An all-orders explicit demonstration of factorization 
(implies answer for certain arbitrary loop order 
Feynman diagrams)

• Systematic high order evaluation of radiative 
corrections for neutron and nuclear beta decay for 
Vud

• Potential applications for other beta decay 
observables, reactor neutrino cross sections and 
flux; muon conversion; … 



Thank you
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