Field theory of the Fermi function

RICHARD HILL, U. Kentucky

BNL theory seminar
April 4, 2024
based on

- 2309.07343 with R. Plestid
- 2309.15929 with R. Plestid
- 2402.13307 with K. Borah and R. Plestid
- work in progress with R. Plestid and P. Vander Griend

Outline

- Definition of classical Fermi function
- Effective theory and factorization
- Renormalization and anomalous dimension
- Neutron beta decay and large pi resummation
- Summary

The classical Fermi function describes enhanced (huge!) QED corrections for electron/positron emission from large-Z nucleus

Fermi function

$$
\sigma \approx F(Z, E) \sigma_{0}
$$

$$
F(Z, E)=\frac{2(1+\eta)}{[\Gamma(2 \eta+1)]^{2}}|\Gamma(\eta+i \xi)|^{2} e^{\pi \xi}(2 p r)^{2(\eta-1)}
$$

$$
\eta=\sqrt{1-(Z \alpha)^{2}} \quad \xi=\frac{Z \alpha}{\beta}
$$

In NR limit (not applicable to neutron and nuclear beta decay) the Fermi function reduces to the Sommerfeld factor

Fermi function

$$
\begin{gathered}
\xi=\frac{Z \alpha}{\beta} \quad \eta=\sqrt{1-\beta^{2} \xi^{2}} \approx 1 \\
F(Z, E) \rightarrow \frac{2 \pi \xi}{1-\exp (-2 \pi \xi)}=1+\pi \xi+\frac{\pi^{2}}{3} \xi^{2}+\ldots
\end{gathered}
$$

Several questions naturally arise:

Fermi function

- what is the quantity r appearing in $F(Z, E)$? Approximately the nuclear radius, but how to go beyond this qualitative model? (answer:
$\left.r^{-1} e^{\gamma_{E}}=\mu \overline{\mathrm{MS}}\right)$
- how to combine with phenomenologically important subleading corrections? (answer: factorization, EFT, symmetry relating different powers of Z at the same power of α)
- what is the "Fermi function" for neutron beta decay, for which neither Z nor β^{-1} is large? (answer: RG analysis to resum $\left.\left(i \pi \log \frac{-\vec{p}^{2}-i 0}{\vec{p}^{2}}\right)^{n}=\pi^{2 n}\right)$
- what is the quantity r appearing in $F(Z, E)$?

Fermi function

$$
F(Z, E)=\frac{2(1+\eta)}{[\Gamma(2 \eta+1)]^{2}}|\Gamma(\eta+i \xi)|^{2} e^{\pi \xi}(2 p r)^{2(\eta-1)}
$$

E. Fermi, An attempt of a theory of beta radiation. 1. Z.Phys. 88 (1934)
"a rough estimate shows that ... "
\Rightarrow need a systematic understanding

- Subleading corrections are critical at the sub-per mille experimental precision. How are these incorporated?

Fermi function

> | and Z-independent radiative corrections |
| :---: |
| Czarnecki, Marciano, Sirlin $1907.06737, \ldots$ |

- Subleading corrections are critical at the sub-per mille experimental precision. How are these incorporated?

Fermi function

Systematically perform renormalization analysis from scale of matching ($\mu=\Lambda_{\text {nuclear }}$) to scale of process $\left(\mu \sim p \sim m_{e}\right)$

Fermi function

convenient counting for nuclei determining $V_{\text {ud }}$:

$$
\begin{aligned}
& Z^{2} \sim L^{2} \equiv \log ^{2}(\Lambda / m) \sim \alpha^{-1} \\
& \Rightarrow \\
& \Rightarrow \alpha L, Z^{2} \alpha^{2} L \sim \alpha^{\frac{1}{2}} \\
& \Rightarrow Z \alpha^{2} L \sim \alpha \\
& \Rightarrow \alpha^{2} L, Z^{2} \alpha^{3} L, Z^{4} \alpha^{4} L \sim \alpha^{\frac{3}{2}}
\end{aligned}
$$

\Rightarrow need three and four loops for per mille precision

When matrix elements are computed for the beta decay process, large perturbative coefficients appear

Factorization

$$
\alpha^{-1} \sim \log ^{2} \frac{\Lambda_{\mathrm{nuc}}}{m_{e}} \sim Z^{2} \sim 100
$$

For example, super allowed nuclear beta decay provides most precise determination of $V_{u d}$

$$
\delta\left|V_{u d}\right| \sim 3 \times 10^{-4}
$$

Require high-order perturbative corrections, e.g.

$$
Z^{2} \alpha^{3} \log \frac{\Lambda_{\text {nuc. }}}{m_{e}} \sim 10^{2-6+1}=10^{-3}
$$

Map the problem to effective field theory

Factorization

$$
\mathscr{L}_{\mathrm{eff}}=-\mathscr{C}\left(\phi_{v}^{[A, Z+1]}\right)^{*} \phi_{v}^{[A, Z]} \bar{e} v_{\mu} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{e}+\text { H.c. } .
$$

$v^{\mu}=(1,0,0,0)$ is four-velocity of the heavy nucleus, $\mathscr{C} \sim G_{F}$

Resum large logarithms by renormalization group within a sequence of effective field theories

Factorization

Consider the factorization at leading power in Z
Start with the Schrodinger Coulomb problem (i.e., NR limit)

Factorization

$$
\left.\begin{array}{l}
\mathscr{M}=\sum_{n=0}^{\infty} \mathscr{M}^{(n)}=\sum_{n=0}^{\infty}\left(2 m Z e^{2}\right)^{n} \int \frac{d^{D} L_{1}}{(2 \pi)^{D}} \int \frac{d^{D} L_{2}}{(2 \pi)^{D}} \cdots \int \frac{d^{D} L_{n}}{(2 \pi)^{D}} \\
\frac{1}{\vec{L}_{1}^{2}+\lambda^{2}} \frac{1}{\left(\vec{L}_{1}-\vec{p}\right)^{2}-\vec{p}^{2}-i 0} \frac{1}{\left(\vec{L}_{1}-\vec{L}_{2}\right)^{2}+\lambda^{2}} \frac{1}{\left(\vec{L}_{2}-\vec{p}\right)^{2}-\vec{p}^{2}-i 0} \\
D=3-2 \epsilon
\end{array} \frac{1}{\left(\vec{L}_{n-1}-\vec{L}_{n}\right)^{2}+\lambda^{2}} \frac{1}{\left(\vec{L}_{n}-\vec{p}\right)^{2}-\vec{p}^{2}-i 0}\right)
$$

At one loop:

Factorization

$$
\mathscr{M}^{(1)}=2 m Z e^{2} \int \frac{d^{D} L_{1}}{(2 \pi)^{D}} \frac{1}{\vec{L}^{2}+\lambda^{2}} \frac{1}{(\vec{L}-\vec{p})^{2}-\vec{p}^{2}-i 0} \rightarrow \frac{i m}{p} \frac{Z e^{2}}{4 \pi}\left(\log \frac{2 p}{\lambda}-\frac{i \pi}{2}\right)
$$

Decompose into momentum regions

$$
\begin{aligned}
& \mathscr{M}_{S}^{(1)}=\int \frac{d^{d} L_{1}}{(2 \pi)^{d}} \frac{Z e^{2}}{L^{2}+\lambda^{2}} \frac{2 m}{-2 \vec{p} \cdot \vec{L}-i 0}=\frac{i Z \alpha}{\beta}\left(\frac{\lambda^{2}}{\mu^{2}}\right)^{-\epsilon} \frac{1}{2 \epsilon} \\
& \mathscr{M}_{H}^{(1)}=\int \frac{d^{d} L}{(2 \pi)^{d}} \frac{Z e^{2}}{L^{2}} \frac{2 m}{(\vec{L}-\vec{p})^{2}-p^{2} \cdot \vec{L}-i 0}=\frac{i Z \alpha}{\beta}\left(\frac{-4 p^{2}}{\mu^{2}-i 0}\right)^{-\epsilon} \frac{-1}{2 \epsilon}
\end{aligned}
$$

Readily see that factorization holds through one-loop order

$$
\mathscr{M}=\mathscr{M}_{S} \mathscr{M}_{H}=1+\mathscr{M}_{S}^{(1)}+\mathscr{M}_{H}^{(1)}+\ldots
$$

Remember an integration identity

$$
\int d^{n} x \frac{\partial}{\partial x^{i}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

Factorization

Apply this to Feynman diagram integrals,

$$
\begin{aligned}
& J\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\int \frac{d^{d} K}{(2 \pi)^{d}} \int \frac{d^{d} L}{(2 \pi)^{d}} \frac{1}{\left[\mathbf{K}^{2}\right]_{1}} \frac{1}{\left.(\mathbf{p}-\mathbf{K})^{2}-\mathbf{p}^{2}\right]^{a_{2}} \frac{1}{\left.\mathbf{L}^{2}\right] a_{3}} \frac{1}{\left.(\mathbf{p}-\mathbf{L})^{2}-\mathbf{p}^{2}\right]^{a_{a}}} \frac{1}{(\mathbf{L}-\mathbf{K}-]^{2} a_{5}}} \\
& \text { Insert: } \\
& \quad \frac{\partial}{\partial K^{i}} K^{i} \quad \frac{\partial}{\partial K^{i}} L^{i} \\
& \quad 0=d-a_{1}-a_{2}-2 a_{5}-a_{1} \mathbf{1}^{+}\left(\mathbf{5}^{-}-\mathbf{3}^{-}\right)-a_{2} \mathbf{2}^{+}\left(\mathbf{5}^{-}-\mathbf{4}^{-}\right)
\end{aligned}
$$

E.g., apply this to $J(0,1,1,1,1)$:

$$
J(0,1,1,1,1)=\frac{1}{d-3}[J(0,2, \underbrace{1,1,0)-J}(0,2,1,0,1)]
$$

We can continue to higher order,

Factorization

$$
\begin{aligned}
\mathscr{M}_{H}^{(2)} & =\int \frac{d^{d} L_{1}}{(2 \pi)^{d}} \int \frac{d^{d} L_{2}}{(2 \pi)^{d}} \frac{Z e^{2}}{L_{1}^{2}} \frac{2 m}{\left(\vec{L}_{1}-\vec{p}\right)^{2}-p^{2}-i 0} \frac{Z e^{2}}{\left(\vec{L}_{1}-\vec{L}_{2}\right)^{2}} \frac{2 m}{\left(\vec{L}_{2}-\vec{p}\right)^{2}-p^{2}-i 0} \\
& =\left(2 m Z e^{2}\right)^{2} J(0,1,1,1,1) \\
& =\left[\frac{i Z \alpha}{\beta}\left(-4 p^{2} / \mu^{2}-i 0\right)^{-\epsilon}\right]^{2}\left[\frac{1}{8 \epsilon^{2}}+\frac{\pi^{2}}{12}\right] \\
\mathscr{M}_{H}^{(3)} & =\left[\frac{i Z \alpha}{\beta}\left(-4 p^{2} / \mu^{2}-i 0\right)^{-\epsilon}\right]^{3}\left[\frac{-1}{48 \epsilon^{3}}-\frac{\pi^{2}}{24 \epsilon}-\frac{13 \zeta(3)}{6}\right]
\end{aligned}
$$

- Even with the tricks of dimensional regularization, these integrals become increasing difficult at high loop order: 4 loops, 5, loops, etc.
- How about 48 loops?

Return to the position-space picture

$$
H=\frac{p^{2}}{2 m}-\frac{Z \alpha}{r} e^{-\lambda r}
$$

Factorization

Solve for wavefunction

$$
\mathcal{M}=\left[\psi^{(-)}(0)\right]^{*}=\Gamma\left(1-\frac{i Z \alpha}{\beta}\right) \exp \left[\frac{Z \alpha}{\beta}\left(\frac{\pi}{2}+i \log \frac{2 p}{\lambda}-i \gamma_{\mathrm{E}}\right)\right]+\mathcal{O}\left(\frac{\lambda}{p}\right)
$$

Since we know the soft function to all orders (exponentiation), we also know the hard function to all orders:

$$
\begin{aligned}
\mathcal{M}_{H}(\mu) & =\frac{\mathcal{M}}{\mathcal{M}_{S}(\mu)}=\Gamma\left(1-\frac{i Z \alpha}{\beta}\right) \exp \left[\frac{Z \alpha}{\beta}\left(\frac{\pi}{2}+i \log \frac{2 p}{\mu}-i \gamma_{\mathrm{E}}\right)\right] \\
& =1+\frac{Z \alpha}{\beta}\left(\frac{\pi}{2}+i \log \frac{2 p}{\mu}\right)+\left(\frac{Z \alpha}{\beta}\right)^{2}\left(\frac{\pi^{2}}{24}+\frac{i \pi}{2} \log \frac{2 p}{\mu}-\frac{1}{2} \log ^{2} \frac{2 p}{\mu}\right)
\end{aligned}
$$

(check: matches with order by order results)
Explicit, all-orders factorization.

Wavefunction computation

Recall the Lippmann-Schwinger equation and Born series,

Factorization

$$
\psi_{\bar{p}}^{(\pm)}(\vec{x})=\langle\vec{x}|\left(1+\frac{1}{E-\hat{H}_{0} \pm i 0} \hat{V}+\frac{1}{E-\hat{H}_{0} \pm i 0} \hat{V} \frac{1}{E-\hat{H}_{0} \pm i 0} \hat{V}+\ldots\right)|\vec{p}\rangle
$$

Coulomb with massive photon,

$$
\begin{gathered}
V(\vec{x})=\left(-Z e^{2}\right) \frac{\exp (-\lambda|\vec{x}|)}{4 \pi|\vec{x}|} \quad \tilde{V}(\vec{L})=\frac{-Z e^{2}}{\vec{L}^{2}+\lambda^{2}} \\
\psi_{\overrightarrow{\vec{p}}}^{(\pm)}(\vec{x})=e^{i \vec{p} \cdot \vec{x}}\left[1+\int \frac{d^{3} L}{(2 \pi)^{3}} e^{i \vec{L} \cdot \vec{x}} \frac{-2 m}{2 \vec{p} \cdot \vec{L}+\vec{L}^{2} \mp i 0} \tilde{V}(\vec{L})\right. \\
\left.+\int \frac{d^{3} L_{1}}{(2 \pi)^{3}} \frac{d^{3} L_{2}}{(2 \pi)^{3}} e^{i \vec{L}_{2} \cdot \vec{x}} \frac{-2 m}{2 \vec{p} \cdot \vec{L}_{2}+\vec{L}_{2}^{2} \mp i 0} \tilde{V}\left(\vec{L}_{2}-\vec{L}_{1}\right) \frac{-2 m}{2 \vec{p} \cdot \vec{L}_{1}+\vec{L}_{1}^{2} \mp i 0} \tilde{V}\left(\vec{L}_{1}\right)+\ldots\right]
\end{gathered}
$$

We require $\psi_{\vec{p}}^{(-)}(\overrightarrow{0})$

Let us solve the Schrodinger equation,

$$
\left[-\frac{1}{2 m} \nabla^{2}-\frac{Z \alpha}{r} e^{-\lambda r}\right] \psi(\vec{x})=\frac{\vec{p}^{2}}{2 m} \psi(\vec{x})
$$

Factorization
Write

$$
\psi_{\vec{p}}(\vec{x} ; \lambda)=e^{i \vec{p} \cdot \vec{x}} F_{\vec{p}}(\vec{x}, \lambda)
$$

Then

$$
\left[-\frac{1}{2} \nabla^{2}-i \vec{p} \cdot \nabla-\frac{m Z \alpha}{r} e^{-\lambda r}\right] F(\vec{x})=0
$$

For $r \ll \lambda^{-1}$
$\left[-\frac{1}{2} \frac{\nabla^{2}}{p^{2}}-i \frac{\hat{\vec{p}} \cdot \vec{\nabla}}{p}-\frac{\xi}{p r}\right] F_{<}=0 \quad F_{<}^{(+)}(\vec{x})=N(p, \lambda)_{1} F_{1}(i \xi, 1, i p(r-z))$
For $r \gg p^{-1}$

$$
\left[-i \frac{\hat{\vec{p}} \cdot \vec{\nabla}}{\lambda}-\frac{\xi}{\lambda r} e^{-\lambda r}\right] F_{>}=0 \quad F_{>}^{(+)}(\vec{x})=\exp \left[i \xi \int_{-\infty}^{z} d z^{\prime}, \frac{e^{-\lambda \sqrt{z^{2}+r^{2}-z^{2}}}}{\sqrt{z^{\prime 2}+r^{2}-z^{2}}}\right]
$$

In the overlap region, $p^{-1} \ll r \ll \lambda^{-1}$, both solutions apply,

$$
F_{<}^{(+)} \rightarrow N(p, \lambda) \frac{1}{\Gamma(1-i \xi)} \exp \left\{-\frac{\pi \xi}{2}-i \xi \log [p(r-z)]\right\}
$$

$$
F_{>}^{(+)} \rightarrow \exp \left\{i \xi\left[-\log \frac{\lambda(r-z)}{2}-\gamma_{\mathrm{E}}\right]\right\}
$$

Enforcing equality determines $N(p, \lambda)$, and then

$$
\psi_{\vec{p}}^{(+)}(\vec{x}=0)=N(p, \lambda)=\Gamma(1-i \xi) \exp \left\{\frac{\pi}{2} \xi+i \xi\left[\log \frac{2 p}{\lambda}-\gamma_{\mathrm{E}}\right]\right\}
$$

Recall that this all-orders amplitude, combined with the all-orders soft function, determines the all-orders hard function

Extend the factorization formalism to field theory: full QED with relativistic and quantum corrections for the electron

Factorization

$$
\begin{aligned}
\mathcal{M}^{(1)} & =2 E Z e^{2} \int \frac{d^{d} L}{(2 \pi)^{d}} \frac{1}{\mathbf{L}^{2}+\lambda^{2}} \frac{1}{(\mathbf{L}-\mathbf{p})^{2}-\mathbf{p}^{2}-i 0}\left[1-\frac{1}{2 E} \gamma^{0} \mathbb{L}\right] \\
& =\frac{i Z \alpha}{\beta}\left[\left(\log \frac{2 p}{\lambda}-\frac{i \pi}{2}\right)+\left(\frac{m \gamma^{0}}{E}-1\right)\left(-\frac{1}{2}\right)\right]
\end{aligned}
$$

at one loop: two relevant momentum regions, $L \sim p$ (hard) and $L \sim \lambda$ (soft)
at two loops: contributions from $L \gg p$

General factorization formula:

$$
\mathcal{M}=\mathcal{M}_{S} \mathcal{M}_{H} \mathcal{M}_{\mathrm{UV}}
$$

Using asymptotic wavefunction methods, can extract hard function to all orders:

Factorization

$$
\mathscr{M}_{H}\left(\mu_{S}, \mu_{H}\right)=\mathscr{M}_{S}^{-1}\left(\mu_{S}\right) \mathscr{M}_{\mathscr{M}_{\mathrm{UV}}^{-1}\left(\mu_{H}\right)}
$$

$$
\begin{aligned}
& \mathscr{M}_{H}=\exp \left[i \xi \log \frac{2 p e^{-\gamma_{E}}}{\mu_{S}}-i(\eta-1) \frac{\pi}{2}\right] \frac{2 \Gamma(\eta-i \xi)}{\Gamma(2 \eta+1)} \sqrt{\frac{\eta-i \xi}{1-i \xi \frac{m}{E}}} \sqrt{\frac{E+\eta m}{E+m}} \sqrt{\frac{2 \eta}{1+\eta}} \times \\
& \times\left(\frac{2 p e^{-\gamma_{E}}}{\mu_{H}}\right)^{\eta-1}\left[\frac{1+\gamma^{0}}{2}+\frac{E+m}{E+\eta m}\left(1-i \xi \frac{m}{E}\right) \frac{1-\gamma^{0}}{2}\right] \\
& \xi=\frac{Z \alpha}{\beta} \\
& \\
& \eta=\sqrt{1-(Z \alpha)^{2}} \\
& \Rightarrow \text { explicit, all-orders factorization (!) }
\end{aligned}
$$

$$
\mathscr{M}=\mathscr{M}_{S}(\lambda / \mu) \mathscr{M}_{H}(p / \mu) \mathscr{M}_{\mathrm{UV}}(\Lambda / \mu)
$$

With the explicit factorization formula,

- what is $\mathrm{F}(\mathrm{Z}, \mathrm{E})$ as a field theory object? answer: leading-in-Z hard function

$$
\left.\left.\langle | \mathscr{M}_{H}\right|^{2}\right\rangle=\left.F(Z, E)\right|_{r_{H}} \times \frac{4 \eta}{(1+\eta)^{2}}
$$

- what is the quantity r appearing in $F(Z, E)$? Approximately the nuclear radius, but how to beyond this qualitative model? answer: renormalization scale

$$
r^{-1} e^{\gamma_{E}}=\mu_{\overline{\mathrm{MS}}}
$$

$\mathscr{M}_{H}=\exp \left[i \xi \log \frac{2 p e^{-\gamma_{E}}}{\mu_{S}}-i(\eta-1) \frac{\pi}{2}\right] \frac{2 \Gamma(\eta-i \xi)}{\Gamma(2 \eta+1)} \sqrt{\frac{\eta-i \xi}{1-i \xi \frac{m}{E}}} \sqrt{\frac{E+\eta m}{E+m}} \sqrt{\frac{2 \eta}{1+\eta}} \times$
$\times\left(\frac{2 p e^{-\gamma_{E}}}{\mu_{H}}\right)^{-1}\left[\frac{1+\gamma^{0}}{2}+\frac{E+m}{E+\eta m}\left(1-i \xi \frac{m}{E}\right) \frac{1-\gamma^{0}}{2}\right]$

When matrix elements are computed for the beta decay process, large perturbative coefficients appear

Renormalization

$$
\alpha^{-1} \sim \log ^{2} \frac{\Lambda_{\mathrm{nuc}}}{m_{e}} \sim Z^{2} \sim 100
$$

Account for log enhancements by RG evolution

Leading Z given by Dirac equation/Fermi function analysis
$Z=0$ limit given by heavy-light current operator
Subleading Z determined by leading Z (new!) using heavy particle symmetry

Symmetry argument

Renormalization

sum over diagrams is invariant under $Q_{A} \leftrightarrow Q_{B}$, $Q_{e} \rightarrow-Q_{e}$

See that e.g.

Renormalization

and in the sum over diagrams at a fixed order in α, the amplitude is invariant

Can see that the anomalous dimension must be built from

$$
Q_{e}^{2}, \quad Q_{A} Q_{B}, \quad Q_{e}\left(Q_{A}-Q_{B}\right)
$$

In particular, with $Q_{e}=-1, \quad Q_{A}=Z+1, \quad Q_{B}=Z$
the anomalous dimension at n loop order is a linear combination of

$$
Z^{i}(Z+1)^{i}, \quad 2 i \leq n
$$

Renormalization

$$
\frac{d \log C}{d \log \mu} \sim \begin{aligned}
& \quad \begin{array}{l}
\alpha(Z+1) \\
\end{array} \begin{array}{l}
+\alpha^{2}\left(Z^{2}+Z+1\right) \\
+\alpha^{3}\left(Z^{3}+Z^{2}+Z+1\right) \\
+\alpha^{4}\left(Z^{4}+Z^{3}+Z^{2}+Z+1\right)
\end{array}
\end{aligned}
$$

remaining undetermined coefficient at 4 loops

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Z^{n} Loops	1-loop	2-loop	3-loop	4-loop
Z^{0}				
Z^{1}				
Z^{2}				
Z^{3}				
Z^{4}				

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}				
Z^{0}				
Z^{1}				
Z^{3}				
Z^{4}				

- no contributions $Z^{m} \alpha^{n}$ with $m>n$

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}				
Z^{0}				
Z^{2}	-			
Z^{3}	-	-		
Z^{4}	-	-	-	

- no contributions $Z^{m} \alpha^{n}$ with $m>n$

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}				
Z^{1}				
Z^{2}	-			
Z^{3}	-	-		
Z^{4}	-	-	-	

- no contributions $Z^{m} \alpha^{n}$ with $m>n$
- leading Dirac solution

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}				
Z^{0}	$\gamma_{0}^{(0)}=0$			
Z^{2}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$		
Z^{3}	-	-	$\gamma_{2}^{(0)}=0$	
Z^{4}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$

- no contributions $Z^{m} \alpha^{n}$ with $m>n$
- leading Dirac solution

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}				
Z^{0}	$\gamma_{0}^{(0)}=0$			
Z^{2}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$		
Z^{3}	-	-	$\gamma_{2}^{(0)}=0$	
Z^{4}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$

- no contributions $Z^{m} \alpha^{n}$ with $m>n$
- leading Dirac solution
- $\mathrm{Z}=0$ limit (heavy-light current)

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}	$\gamma_{0}^{(1)}=-3$	$\gamma_{1}^{(2)}=-16 \zeta_{2}+\frac{5}{2}+\frac{10}{3} n_{e}$	$\gamma_{2}^{(3)}=$ (see caption)	$\gamma_{3}^{(4)}=$ (see caption)
Z^{0}	$\gamma_{0}^{(0)}=0$			
Z^{1}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$		
Z^{2}	-	-	$\gamma_{2}^{(0)}=0$	
Z^{3}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$
Z^{4}	-			

- no contributions $Z^{m} \alpha^{n}$ with $m>n$
- leading Dirac solution
- $\mathrm{Z}=0$ limit (heavy-light current)

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}	$\gamma_{0}^{(1)}=-3$	$\gamma_{1}^{(2)}=-16 \zeta_{2}+\frac{5}{2}+\frac{10}{3} n_{e}$	$\gamma_{2}^{(3)}=$ (see caption)	$\gamma_{3}^{(4)}=$ (see caption)
Z^{1}	$\gamma_{0}^{(0)}=0$			
Z^{2}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$		
Z^{3}	-	-	$\gamma_{2}^{(0)}=0$	
Z^{4}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$

- no contributions $Z^{m} \alpha^{n}$ with $m>n$
- leading Dirac solution
- $\mathrm{Z}=0$ limit (heavy-light current)
- symmetry linking different powers of Z

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}	$\gamma_{0}^{(1)}=-3$	$\gamma_{1}^{(2)}=-16 \zeta_{2}+\frac{5}{2}+\frac{10}{3} n_{e}$	$\gamma_{2}^{(3)}=$ (see caption)	$\gamma_{3}^{(4)}=$ (see caption)
Z^{0}	$\gamma_{0}^{(0)}=0$	$\gamma_{1}^{(1)}=\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(2)}=\gamma_{2}^{(1)}$	$\gamma_{3}^{(3)}=\gamma_{3}^{(2)}-\gamma_{3}^{(0)}$
Z^{1}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$		
Z^{2}	-	-	$\gamma_{2}^{(0)}=0$	$\gamma_{3}^{(1)}=2 \gamma_{3}^{(0)}$
Z^{3}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$
Z^{4}	-			

- no contributions $Z^{m} \alpha^{n}$ with $m>n$
- leading Dirac solution
- $\mathrm{Z}=0$ limit (heavy-light current)
- symmetry linking different powers of Z

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}	$\gamma_{0}^{(1)}=-3$	$\gamma_{1}^{(2)}=-16 \zeta_{2}+\frac{5}{2}+\frac{10}{3} n_{e}$	$\gamma_{2}^{(3)}=$ (see caption)	$\gamma_{3}^{(4)}=$ (see caption)
Z^{0}	$\gamma_{0}^{(0)}=0$	$\gamma_{1}^{(1)}=\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(2)}=\gamma_{2}^{(1)}$	$\gamma_{3}^{(3)}=\gamma_{3}^{(2)}-\gamma_{3}^{(0)}$
Z^{1}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$		
Z^{2}	-	-	$\gamma_{2}^{(0)}=0$	$\gamma_{3}^{(1)}=2 \gamma_{3}^{(0)}$
Z^{3}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$
Z^{4}	-			

- no contributions $Z^{m} \alpha^{n}$ with $m>n$
- leading Dirac solution
- $\mathrm{Z}=0$ limit (heavy-light current)
- symmetry linking different powers of Z
- remaining: $Z^{2} \alpha^{3}$ and $Z^{2} \alpha^{4}$

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}	$\gamma_{0}^{(1)}=-3$	$\gamma_{1}^{(2)}=-16 \zeta_{2}+\frac{5}{2}+\frac{10}{3} n_{e}$	$\gamma_{2}^{(3)}=$ (see caption)	$\gamma_{3}^{(4)}=$ (see caption)
Z^{0}	$\gamma_{0}^{(0)}=0$	$\gamma_{1}^{(1)}=\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(2)}=\gamma_{2}^{(1)}$	$\gamma_{3}^{(3)}=\gamma_{3}^{(2)}-\gamma_{3}^{(0)}$
Z^{1}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(2)}$
Z^{2}	-	$\gamma_{2}^{(0)}=0$	$\gamma_{3}^{(1)}=2 \gamma_{3}^{(0)}$	
Z^{3}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$
Z^{4}	-			

- no contributions $Z^{m} \alpha^{n}$ with $m>n$
- leading Dirac solution
- $\mathrm{Z}=0$ limit (heavy-light current)
- symmetry linking different powers of Z
- remaining: $Z^{2} \alpha^{3}$ and $Z^{2} \alpha^{4}$

$$
\gamma=\frac{d \log \mathscr{C}}{d \log \mu}=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}	$\gamma_{0}^{(1)}=-3$	$\gamma_{1}^{(2)}=-16 \zeta_{2}+\frac{5}{2}+\frac{10}{3} n_{e}$	$\gamma_{2}^{(3)}=$ (see caption)	$\gamma_{3}^{(4)}=$ (see caption)
Z^{0}	$\gamma_{0}^{(0)}=0$	$\gamma_{1}^{(1)}=\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(2)}=\gamma_{2}^{(1)}$	$\gamma_{3}^{(3)}=\gamma_{3}^{(2)}-\gamma_{3}^{(0)}$
Z^{1}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(2)}$
Z^{2}	-	$\gamma_{2}^{(0)}=0$	$\gamma_{3}^{(1)}=2 \gamma_{3}^{(0)}$	
Z^{3}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$
Z^{4}	-			

- no contributions $Z^{m} \alpha^{n}$ with $m>n$
- leading Dirac solution
- $\mathrm{Z}=0$ limit (heavy-light current)
- symmetry linking different powers of Z
- remaining: $Z^{2} \alpha^{3}$ and $Z^{2} \alpha^{4}$
\Rightarrow need $\gamma_{2}^{(1)}$ as missing ingredient for permille level analysis of beta decay

To isolated powers of Z, it is convenient to rearrange the perturbation series

Renormalization

$$
\begin{gathered}
\mathscr{L}=\bar{h}_{v}^{(A)}(i v \cdot \partial+e(Z+1) v \cdot A) h_{v}^{(A)}+\bar{h}_{v}^{(B)}(i v \cdot \partial+e Z v \cdot A) h_{v}^{(B)} \\
+G_{F} h_{v}^{(B)} \Gamma h_{v}^{(A)} \bar{\nu} \Gamma^{\prime} e
\end{gathered}
$$

Introduce Wilson line field redefinition to (almost) decouple photons from heavy particles

$$
\begin{gathered}
h_{v}^{(A)}=S_{v} h_{v}^{(A 0)}=S_{v} h_{v}^{(B 0)} \\
\mathscr{L}=\bar{h}_{v}^{(A 0)}(i v \cdot \partial+e v \cdot A) h_{v}^{(A 0)}+\bar{h}_{v}^{(B)} i v \cdot \partial h_{v}^{(B)} \\
+G_{F} S_{v}^{\dagger} S_{v} h_{v}^{(B 0)} \Gamma h_{v}^{(A 0)} \bar{\nu} \Gamma^{\prime} e
\end{gathered}
$$

Equivalent picture in terms of charge 1 heavy particle in background charge Z field

$$
S_{v}(x)=\exp \left[i Z e \int_{-\infty}^{0} d s v \cdot A(x+s v)\right]=\exp \left[i Z e\left(\frac{i}{i v \cdot \partial+i 0} v \cdot A\right)\right]
$$

Renormalization

$$
S_{v}^{\dagger} S_{v}=\exp [i Z e(2 \pi \delta(i v \cdot \partial) v \cdot A)]
$$

[Z]
Simplified calculation at fixed Z, and useful/ interesting relations between different powers of Z obtained by equating the two pictures

With this rearrangement, 3-loop computation reduced to 10 diagrams

Renormalization

basic idea:

- reduce to basis integrals

$$
\begin{aligned}
& I^{(b)}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \\
& =\int(\mathrm{d} \omega)(\mathrm{d} k)(\mathrm{d} q)(\mathrm{d} p) \omega^{b} \frac{1}{\left[\omega^{2}+(\boldsymbol{k}+\boldsymbol{p})^{2}\right]^{a_{1}}} \frac{1}{\left(\mathbf{p}^{2}\right)^{a_{2}}} \frac{1}{\left[(\boldsymbol{p}-\boldsymbol{q})^{2}\right]^{a_{3}}} \frac{1}{\left[\omega^{2}+(\boldsymbol{k}+\boldsymbol{q})^{2}\right]^{a_{4}}} \frac{1}{\left(\mathbf{q}^{2}\right)^{a_{5}}} \frac{1}{\mathbf{q}^{2}+\lambda^{2}} \times \\
& \quad \times \frac{1}{\left(\omega^{2}+\boldsymbol{k}^{2}\right)^{a_{6}}} \frac{1}{\omega^{2}+\boldsymbol{k}^{2}+\lambda^{2}},
\end{aligned}
$$

- subset of integrals involving two momentum differences, evaluated by

1) use that λ (IR regulator) is the only scale

$$
I \sim \lambda^{-6 \epsilon} \quad \Longrightarrow \quad I=\frac{-1}{6 \epsilon} \lambda \frac{d}{d \lambda} I
$$

2) isolate and evaluate sub divergences
3) evaluate remaining finite coefficient of $1 / \epsilon$ at $\epsilon \rightarrow 0$

- remaining integrals reduced to previous step using integration by parts identities

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}	$\gamma_{0}^{(1)}=-3$	$\gamma_{1}^{(2)}=-16 \zeta_{2}+\frac{5}{2}+\frac{10}{3} n_{e}$	$\gamma_{2}^{(3)}=($ see caption)	$\gamma_{3}^{(4)}=$ (see caption)
Z^{0}	$\gamma_{0}^{(0)}=0$	$\gamma_{1}^{(1)}=\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(2)}=\gamma_{2}^{(1)}$	$\gamma_{3}^{(3)}=\gamma_{3}^{(2)}-\gamma_{3}^{(0)}$
Z^{2}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(1)}=16 \pi^{2}\left(6-\frac{\pi^{2}}{3}\right)$	$\gamma_{3}^{(2)}$
Z^{3}	-	-	$\gamma_{2}^{(0)}=0$	$\gamma_{3}^{(1)}=2 \gamma_{3}^{(0)}$
Z^{4}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$

Loops	1-loop	2-loop	3-loop	4-loop
Z^{n}	$\gamma_{0}^{(1)}=-3$	$\gamma_{1}^{(2)}=-16 \zeta_{2}+\frac{5}{2}+\frac{10}{3} n_{e}$	$\gamma_{2}^{(3)}=$ (see caption)	$\gamma_{3}^{(4)}=$ (see caption)
Z^{0}	$\gamma_{0}^{(0)}=0$	$\gamma_{1}^{(1)}=\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(2)}=\gamma_{2}^{(1)}$	$\gamma_{3}^{(3)}=\gamma_{3}^{(2)}-\gamma_{3}^{(0)}$
Z^{2}	-	$\gamma_{1}^{(0)}=-8 \pi^{2}$	$\gamma_{2}^{(1)}=16 \pi^{2}\left(6-\frac{\pi^{2}}{3}\right)$	$\gamma_{3}^{(2)}$
Z^{3}	-	-	$\gamma_{2}^{(0)}=0$	$\gamma_{3}^{(1)}=2 \gamma_{3}^{(0)}$
Z^{4}	-	-	-	$\gamma_{3}^{(0)}=-32 \pi^{4}$

- we disagree with an old result in the literature [Jaus and Rasche, PRD 35, 3420 (1987)]. Only diagrams (a), (b), (c) considered. Unregulated subdivergences.

Numerically important modifications to nuclear beta decay rates

Implications

transition	$(\Delta a) \times Z^{2} \alpha^{3} \log (\Lambda / m)$
${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$	-0.6×10^{-4}
${ }^{14} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}$	-1.1×10^{-4}
${ }^{26 m} \mathrm{Al} \rightarrow{ }^{26} \mathrm{Mg}$	-3.2×10^{-4}
${ }^{46} \mathrm{~V} \rightarrow{ }^{46} \mathrm{Ti}$	-10.5×10^{-4}
${ }^{54} \mathrm{Co} \rightarrow{ }^{54} \mathrm{Fe}$	-14.6×10^{-4}

Current implementations of three-loop corrections based on "heuristic ansatz" of Sirlin and Zucchini, which incorporated (incorrect) log-enhanced term of Jaus and Rasche

$$
R C=\left(1+\delta_{R}^{\prime}\right)\left(1+\Delta_{R}^{V}\right)\left(1+\delta_{\mathrm{NS}}-\delta_{C}\right)
$$

The Fermi function can be motivated by large Z or small velocity. Neutron beta decay has neither.

The case $\mathrm{Z}=0$

The one-loop correction, and a Fermi function ansatz for higher-order corrections, exhibit large perturbative corrections. Where would these come from?

$$
1+4.6 \alpha+16 \alpha^{2}+34 \alpha^{3}+\ldots
$$

Previous treatments have not separated scales

"Fermi function"

[very long (f)] x [long (g)] x [hadronic] x [electroweak]

The usual Fermi function does not apply to neutron beta decay $(Z=0)$. Differences starting at two loop order

Recall the hard function for the SchrodingerCoulomb problem (similar for Dirac-Coulomb),

$$
\mathscr{M}_{H}^{(1)}=\left[\frac{i Z \bar{\alpha}}{\beta}\left(-4 p^{2} / \mu^{2}-i 0\right)^{-\epsilon}\right]\left[\frac{-1}{2 \epsilon}\right]
$$

The case $\mathrm{Z}=0$

$$
\begin{aligned}
& \mathscr{M}_{H}^{(2)}=\left[\frac{i Z \bar{\alpha}}{\beta}\left(-4 p^{2} / \mu^{2}-i 0\right)^{-\epsilon}\right]^{2}\left[\frac{1}{8 \epsilon^{2}}+\frac{\pi^{2}}{12}+5 \zeta(3) \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right] \\
& \mathscr{M}_{H}^{(3)}=\left[\frac{i Z \bar{\alpha}}{\beta}\left(-4 p^{2} / \mu^{2}-i 0\right)^{-\epsilon}\right]^{3}\left[\frac{-1}{48 \epsilon^{3}}-\frac{\pi^{2}}{24 \epsilon}-\frac{13 \zeta(3)}{6}+\mathcal{O}(\epsilon)\right]
\end{aligned}
$$

Note the presence of a new "scale", associated with the time-like process of electron+proton production

Idea: resum large logarithms associated with the ratio of scales:

$$
i \pi \log \frac{-\vec{p}^{2}-i 0}{\vec{p}^{2}}=\pi^{2} \approx 10
$$

These logarithms are associated with the dependence on soft factorization scale μ_{S},

$$
\mathscr{M}=\mathscr{M}_{S}\left(\lambda / \mu_{S}\right) \mathscr{M}_{H}\left(p / \mu_{S}, p / \mu_{H}\right) \mathscr{M}_{\mathrm{UV}}\left(\Lambda / \mu_{H}\right)
$$

Scale dependence determined by soft anomalous dimension, known to all orders (heavy-heavy cusp anomalous dimension for electron-proton system)

A different counting is needed when Z becomes large (e.g. Pb or U)

$$
Z \sim L^{2} \equiv \log ^{2}(\Lambda / m) \sim \alpha^{-1}
$$

$$
\log \left(\frac{C\left(\mu_{L}\right)}{C\left(\mu_{H}\right)}\right)=\left[-\gamma^{(0)}\left(Z \alpha_{L}\right) L\right]+\left[b_{0} \alpha_{L} L^{2} \frac{\left(Z \alpha_{L}\right)^{2}}{2 \sqrt{1-\left(Z \alpha_{L}\right)^{2}}}\right]+\left[b_{0}^{2} \alpha_{L}^{2} L^{3} \frac{\left(Z \alpha_{L}\right)^{2}\left(3-2\left(Z \alpha_{L}\right)^{2}\right)}{6\left(1-\left(Z \alpha_{L}\right)^{2}\right)^{\frac{1}{2}}}-\alpha_{L} L \gamma^{(1)}\left(Z \alpha_{L}\right)\right]
$$

$$
\alpha^{-\frac{1}{2}} \alpha^{0} \quad \alpha^{\frac{1}{2}}
$$

$$
\gamma=\sum_{n=0}^{\infty} \sum_{i=0}^{n+1}\left(\frac{\alpha}{4 \pi}\right)^{n+1} \gamma_{n}^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z \alpha)+\alpha \gamma^{(1)}(Z \alpha)+\ldots
$$

\Rightarrow need all (or at least high) orders for $\gamma^{(0)}$ and $\gamma^{(1)}$ to go beyond $O(1)$
$\gamma^{(0)}$ is known to all orders (Dirac limit):

$$
\gamma^{(0)}=\sqrt{1-(Z \alpha)^{2}}-1
$$

The case Z large

A simple "exploratory spirit" ansatz for $\gamma^{(1)}$ was previously used [Wilkinson 1997]*

$$
\begin{aligned}
\gamma^{(1)}= & -\frac{1}{2}\left[(Z \alpha)+0.57(Z \alpha)^{2}+0.50 \frac{(Z \alpha)^{3}}{1-(Z \alpha)}\right] \\
= & -\frac{1}{2}(Z \alpha)-0.28(Z \alpha)^{2}-0.25\left[(Z \alpha)^{3}+(Z \alpha)^{5}+(Z \alpha)^{7}+\ldots\right] \\
& -0.25\left[(Z \alpha)^{4}+(Z \alpha)^{6}+(Z \alpha)^{8}+\ldots\right]
\end{aligned}
$$

We now know

$$
\begin{aligned}
\gamma_{\text {odd }}^{(1)} & =\frac{1}{2} \frac{\partial}{\partial(Z \alpha)} \gamma^{(0)}=\frac{-Z \alpha}{2 \sqrt{1-(Z \alpha)^{2}}} \\
& =-\frac{1}{2}(Z \alpha)-\frac{1}{4}(Z \alpha)^{3}-\frac{3}{16}(Z \alpha)^{5}-\frac{5}{32}(Z \alpha)^{7}+\ldots \\
\gamma_{\text {even }}^{(1)} & =\frac{(Z \alpha)^{2}}{(4 \pi)^{3}} \gamma_{2}^{(1)}+\ldots=0.216(Z \alpha)^{2}+\ldots
\end{aligned}
$$

$$
{ }^{*} 0.50 \approx(0.48+1+0.57+0.16) / 4
$$

Summary

- An all-orders explicit demonstration of factorization (implies answer for certain arbitrary loop order Feynman diagrams)
- Systematic high order evaluation of radiative corrections for neutron and nuclear beta decay for $V_{u d}$
- Potential applications for other beta decay observables, reactor neutrino cross sections and flux; muon conversion; ...

Thank you

