Field theory of the Fermi function

RICHARD HILL, U. Kentucky

BNL theory seminar April 4, 2024

based on

- 2309.07343 with R. Plestid
- 2309.15929 with R. Plestid
- 2402.13307 with K. Borah and R. Plestid
- work in progress with R. Plestid and P. Vander Griend

Outline

- Definition of classical Fermi function
- Effective theory and factorization
- Renormalization and anomalous dimension
- Neutron beta decay and large pi resummation
- Summary

The classical Fermi function describes enhanced (huge!) QED corrections for electron/positron emission from large-Z nucleus

 $\sigma \approx F(Z, E) \, \sigma_0$

$$F(Z, E) = \frac{2(1+\eta)}{[\Gamma(2\eta+1)]^2} |\Gamma(\eta+i\xi)|^2 e^{\pi\xi} (2pr)^{2(\eta-1)}$$

$$\eta = \sqrt{1 - (Z\alpha)^2} \qquad \xi = \frac{Z\alpha}{\beta}$$

Fermi function

In NR limit (not applicable to neutron and nuclear beta decay) the Fermi function reduces to the Sommerfeld factor

Fermi function

$$\xi = \frac{Z\alpha}{\beta} \qquad \eta = \sqrt{1 - \beta^2 \xi^2} \approx 1$$

$$F(Z, E) \to \frac{2\pi\xi}{1 - \exp(-2\pi\xi)} = 1 + \pi\xi + \frac{\pi^2}{3}\xi^2 + \dots$$

Fermi function

Several questions naturally arise:

- what is the quantity r appearing in F(Z,E)? Approximately the nuclear radius, but how to go beyond this qualitative model? (answer: $r^{-1}e^{\gamma_E} = \mu_{\overline{\rm MS}}$)
- how to combine with phenomenologically important subleading corrections? (answer: factorization, EFT, symmetry relating different powers of Z at the same power of *α*)
- what is the "Fermi function" for neutron beta decay, for which neither Z nor β^{-1} is large? (answer: RG analysis to resum $\left(i\pi \log \frac{-\vec{p}^2 - i0}{\vec{p}^2}\right)^n = \pi^{2n}$)

• what is the quantity r appearing in F(Z,E)?

Fermi function

$$F(Z,E) = \frac{2(1+\eta)}{[\Gamma(2\eta+1)]^2} |\Gamma(\eta+i\xi)|^2 e^{\pi\xi} (2pr)^{2(\eta-1)}$$

E. Fermi, An attempt of a theory of beta radiation. 1. Z.Phys. 88 (1934)

"a rough estimate shows that ... "

⇒need a systematic understanding

	German -	←	English
)	Dabei sei bemerkt, dass die relativistisehen Eigenfunktionen im Coulomb- Feld flit die Zustimde mit j	<	It should be noted that the relativistic eigenfunctions in the Coulomb field for the states with $j - 1/a$ $(2s^{-/-} and ^{-P-/2})$ become infinitely large for $r \sim 0$.
	~P~/2)fOr r ~ 0 unendlieh grol~ werden.		Now, however, the nuclear attraction for the electrons obeys Coulomb's law only
	Nun gehoreht aber die Kernanziehung for die		up to r>rho, where rho here means the nuclear radius.
	Elektronen dem Coulombsehen Gesetz nur bis r>rho, wo rho hier den		A rough calculation shows that, if one makes plausible assumptions about the course of the
	Kernradius bedeutet.		electric field inside the nucleus, the value of XX at the
	Ubersehlagsrech nung zeigt, dass, wenn man		very close to the value of XX in the case of Coulomb's
	plausible Annahmen fiber den Verlauf des elektrischen Feldes innerhalb		law at the distance rho assume from the center worde.
	des Kerns macht, der Wert yon XX im Mittelpunkt einen Wert hat, der sehr nahe		
	dem Werte liegt, den XX im Falle des Coulomb- Gesetzes in der		
	vom Mittelpunkt annehmen		

worde.

 Subleading corrections are critical at the sub-per mille experimental precision. How are these incorporated?

 Subleading corrections are critical at the sub-per mille experimental precision. How are these incorporated?

Systematically perform renormalization analysis from scale of matching ($\mu = \Lambda_{nuclear}$) to scale of process ($\mu \sim p \sim m_e$)

Fermi function

Fermi function

convenient counting for nuclei determining V_{ud} :

 $Z^2 \sim L^2 \equiv \log^2(\Lambda/m) \sim \alpha^{-1}$

$$\Rightarrow \alpha L, Z^2 \alpha^2 L \sim \alpha^{\frac{1}{2}}$$

$$\Rightarrow Z \alpha^2 L \sim \alpha$$

$$\Rightarrow \alpha^2 L, Z^2 \alpha^3 L, Z^4 \alpha^4 L \sim \alpha^{\frac{3}{2}}$$

 \Rightarrow need three and four loops for per mille precision

When matrix elements are computed for the beta decay process, large perturbative coefficients appear

Factorization

$$\alpha^{-1} \sim \log^2 \frac{\Lambda_{\text{nuc}}}{m_e} \sim Z^2 \sim 100$$

For example, super allowed nuclear beta decay provides most precise determination of V_{ud}

 $\delta |V_{ud}| \sim 3 \times 10^{-4}$

Require high-order perturbative corrections, e.g.

$$Z^2 \alpha^3 \log \frac{\Lambda_{\text{nuc.}}}{m_e} \sim 10^{2-6+1} = 10^{-3}$$

Map the problem to effective field theory

$$\mathscr{L}_{\text{eff}} = -\mathscr{C}(\phi_v^{[A,Z+1]})^* \phi_v^{[A,Z]} \bar{e} v_\mu \gamma^\mu (1-\gamma_5) \nu_e + \text{H.c.}$$

 $v^{\mu} = (1,0,0,0)$ is four-velocity of the heavy nucleus, $\mathscr{C} \sim G_F$

Resum large logarithms by renormalization group within a sequence of effective field theories

Consider the factorization at leading power in Z

Start with the Schrodinger Coulomb problem (i.e., NR limit)

$$\begin{aligned} \mathcal{M} &= \sum_{n=0}^{\infty} \mathcal{M}^{(n)} = \sum_{n=0}^{\infty} (2mZe^2)^n \int \frac{d^D L_1}{(2\pi)^D} \int \frac{d^D L_2}{(2\pi)^D} \cdots \int \frac{d^D L_n}{(2\pi)^D} \\ &\frac{1}{\overrightarrow{L}_1^2 + \lambda^2} \frac{1}{(\overrightarrow{L}_1 - \overrightarrow{p})^2 - \overrightarrow{p}^2 - i0} \frac{1}{(\overrightarrow{L}_1 - \overrightarrow{L}_2)^2 + \lambda^2} \frac{1}{(\overrightarrow{L}_2 - \overrightarrow{p})^2 - \overrightarrow{p}^2 - i0} \\ &\cdots \frac{1}{(\overrightarrow{L}_{n-1} - \overrightarrow{L}_n)^2 + \lambda^2} \frac{1}{(\overrightarrow{L}_n - \overrightarrow{p})^2 - \overrightarrow{p}^2 - i0} \end{aligned}$$

At one loop:

Factorization

$$\mathscr{M}^{(1)} = 2mZe^2 \int \frac{d^D L_1}{(2\pi)^D} \frac{1}{\vec{L}^2 + \lambda^2} \frac{1}{(\vec{L} - \vec{p})^2 - \vec{p}^2 - i0} \to \frac{im}{p} \frac{Ze^2}{4\pi} \left(\log \frac{2p}{\lambda} - \frac{i\pi}{2} \right)$$

Decompose into momentum regions

$$\mathcal{M}_{S}^{(1)} = \int \frac{d^{d}L_{1}}{(2\pi)^{d}} \frac{Ze^{2}}{L^{2} + \lambda^{2}} \frac{2m}{-2\vec{p}\cdot\vec{L} - i0} = \frac{iZ\alpha}{\beta} \left(\frac{\lambda^{2}}{\mu^{2}}\right)^{-\epsilon} \frac{1}{2\epsilon}$$
$$\mathcal{M}_{H}^{(1)} = \int \frac{d^{d}L}{(2\pi)^{d}} \frac{Ze^{2}}{L^{2}} \frac{2m}{(\vec{L} - \vec{p})^{2} - p^{2}\cdot\vec{L} - i0} = \frac{iZ\alpha}{\beta} \left(\frac{-4p^{2}}{\mu^{2} - i0}\right)^{-\epsilon} \frac{-1}{2\epsilon}$$

Readily see that factorization holds through one-loop order

$$\mathcal{M} = \mathcal{M}_{S}\mathcal{M}_{H} = 1 + \mathcal{M}_{S}^{(1)} + \mathcal{M}_{H}^{(1)} + \dots$$

Remember an integration identity

$$\int d^n x \, \frac{\partial}{\partial x^i} f(x_1, x_2, \dots, x_n) = 0$$

Apply this to Feynman diagram integrals,

$$J(a_1, a_2, a_3, a_4, a_5) = \int \frac{d^d K}{(2\pi)^d} \int \frac{d^d L}{(2\pi)^d} \frac{1}{[\mathbf{K}^2]^{a_1}} \frac{1}{[(\mathbf{p} - \mathbf{K})^2 - \mathbf{p}^2]^{a_2}} \frac{1}{[\mathbf{L}^2]^{a_3}} \frac{1}{[(\mathbf{p} - \mathbf{L})^2 - \mathbf{p}^2]^{a_4}} \frac{1}{[(\mathbf{L} - \mathbf{K})^2]^{a_5}} \frac{1}{[(\mathbf{L} - \mathbf{K})^2]^{a_5}} \frac{1}{[(\mathbf{p} - \mathbf{L})^2 - \mathbf{p}^2]^{a_4}} \frac{1}{[(\mathbf{p} - \mathbf{L})^2 - \mathbf{L}^2 - \mathbf{L}^2]^{a_5}} \frac{1}{[(\mathbf{p} - \mathbf{L})^2 - \mathbf{L}^2 - \mathbf{L}^2]^{a_5}} \frac{1}{[(\mathbf{p} - \mathbf{L})^2 -$$

$$\frac{\partial}{\partial K^i} K^i \qquad \frac{\partial}{\partial K^i} L^i$$

$$0 = d - a_1 - a_2 - 2a_5 - a_1 \mathbf{1}^+ (\mathbf{5}^- - \mathbf{3}^-) - a_2 \mathbf{2}^+ (\mathbf{5}^- - \mathbf{4}^-)$$

E.g., apply this to J(0,1,1,1,1):

$$J(0, 1, 1, 1, 1) = \frac{1}{d-3} \left[J(0, 2, 1, 1, 0) - J(0, 2, 1, 0, 1) \right]$$

simpler integrals

We can continue to higher order,

$$\begin{aligned} \mathcal{M}_{H}^{(2)} &= \int \frac{d^{d}L_{1}}{(2\pi)^{d}} \int \frac{d^{d}L_{2}}{(2\pi)^{d}} \frac{Ze^{2}}{L_{1}^{2}} \frac{2m}{(\vec{L}_{1} - \vec{p})^{2} - p^{2} - i0} \frac{Ze^{2}}{(\vec{L}_{1} - \vec{L}_{2})^{2}} \frac{2m}{(\vec{L}_{2} - \vec{p})^{2} - p^{2} - i0} \\ &= (2mZe^{2})^{2} J(0, 1, 1, 1, 1) \\ &= \left[\frac{iZ\alpha}{\beta} (-4p^{2}/\mu^{2} - i0)^{-\epsilon}\right]^{2} \left[\frac{1}{8\epsilon^{2}} + \frac{\pi^{2}}{12}\right] \end{aligned}$$

$$\mathscr{M}_{H}^{(3)} = \left[\frac{iZ\alpha}{\beta}(-4p^{2}/\mu^{2} - i0)^{-\epsilon}\right]^{3} \left[\frac{-1}{48\epsilon^{3}} - \frac{\pi^{2}}{24\epsilon} - \frac{13\zeta(3)}{6}\right]$$

- Even with the tricks of dimensional regularization, these integrals become increasing difficult at high loop order: 4 loops, 5, loops, etc.
- How about 48 loops?

Return to the position-space picture

$$H = \frac{p^2}{2m} - \frac{Z\alpha}{r}e^{-\lambda r}$$

Solve for wavefunction

Factorization

$$\mathcal{M} = [\psi^{(-)}(0)]^* = \Gamma\left(1 - \frac{iZ\alpha}{\beta}\right) \exp\left[\frac{Z\alpha}{\beta}\left(\frac{\pi}{2} + i\log\frac{2p}{\lambda} - i\gamma_{\rm E}\right)\right] + \mathcal{O}\left(\frac{\lambda}{p}\right)$$

Since we know the soft function to all orders (exponentiation), we also know the hard function to all orders:

$$\mathcal{M}_{H}(\mu) = \frac{\mathcal{M}}{\mathcal{M}_{S}(\mu)} = \Gamma\left(1 - \frac{iZ\alpha}{\beta}\right) \exp\left[\frac{Z\alpha}{\beta}\left(\frac{\pi}{2} + i\log\frac{2p}{\mu} - i\gamma_{\rm E}\right)\right]$$
$$= 1 + \frac{Z\alpha}{\beta}\left(\frac{\pi}{2} + i\log\frac{2p}{\mu}\right) + \left(\frac{Z\alpha}{\beta}\right)^{2}\left(\frac{\pi^{2}}{24} + \frac{i\pi}{2}\log\frac{2p}{\mu} - \frac{1}{2}\log^{2}\frac{2p}{\mu}\right)$$

(check: matches with order by order results)

Explicit, all-orders factorization.

Wavefunction computation

Recall the Lippmann-Schwinger equation and Born series,

$$\psi_{\vec{p}}^{(\pm)}(\vec{x}) = \langle \vec{x} | \left(1 + \frac{1}{E - \hat{H}_0 \pm i0} \hat{V} + \frac{1}{E - \hat{H}_0 \pm i0} \hat{V} \frac{1}{E - \hat{H}_0 \pm i0} \hat{V} + \dots \right) | \vec{p} \rangle$$

Coulomb with massive photon,

p

$$V(\vec{x}) = (-Ze^{2}) \frac{\exp(-\lambda |\vec{x}|)}{4\pi |\vec{x}|} \qquad \tilde{V}(\vec{L}) = \frac{-Ze^{2}}{\vec{L}^{2} + \lambda^{2}}$$

$$\psi_{\vec{p}}^{(\pm)}(\vec{x}) = e^{i\vec{p}\cdot\vec{x}} \left[1 + \int \frac{d^{3}L}{(2\pi)^{3}} e^{i\vec{L}\cdot\vec{x}} \frac{-2m}{2\vec{p}\cdot\vec{L} + \vec{L}^{2} \mp i0} \tilde{V}(\vec{L}) + \int \frac{d^{3}L_{1}}{(2\pi)^{3}} \frac{d^{3}L_{2}}{(2\pi)^{3}} e^{i\vec{L}_{2}\cdot\vec{x}} \frac{-2m}{2\vec{p}\cdot\vec{L}_{2} + \vec{L}_{2}^{2} \mp i0} \tilde{V}(\vec{L}_{2} - \vec{L}_{1}) \frac{-2m}{2\vec{p}\cdot\vec{L}_{1} + \vec{L}_{1}^{2} \mp i0} \tilde{V}(\vec{L}_{1}) + \dots \right]$$
We require $\psi_{\vec{q}}^{(-)}(\vec{0})$

Let us solve the Schrodinger equation,

$$\left[-\frac{1}{2m}\nabla^2 - \frac{Z\alpha}{r}e^{-\lambda r}\right]\psi(\vec{x}) = \frac{\vec{p}^2}{2m}\psi(\vec{x})$$

Factorization

Write

$$\psi_{\vec{p}}(\vec{x};\lambda) = e^{i\vec{p}\cdot\vec{x}}F_{\vec{p}}(\vec{x},\lambda)$$

Then

$$\left[-\frac{1}{2}\nabla^2 - i\vec{p}\cdot\nabla - \frac{mZ\alpha}{r}e^{-\lambda r}\right]F(\vec{x}) = 0$$

For $r \ll \lambda^{-1}$

$$\left[-\frac{1}{2}\frac{\nabla^2}{p^2} - i\frac{\hat{\vec{p}}\cdot\vec{\nabla}}{p} - \frac{\xi}{pr}\right]F_{<} = 0 \qquad F_{<}^{(+)}(\vec{x}) = N(p,\lambda)_1F_1(i\xi,1,ip(r-z))$$

For $r \gg p^{-1}$

$$\left[-i\frac{\hat{\vec{p}}\cdot\vec{\nabla}}{\lambda} - \frac{\xi}{\lambda r}e^{-\lambda r}\right]F_{>} = 0 \qquad F_{>}^{(+)}(\vec{x}) = \exp\left[i\xi\int_{-\infty}^{z}dz', \frac{e^{-\lambda\sqrt{z^{2}+r^{2}-z^{2}}}}{\sqrt{z^{2}+r^{2}-z^{2}}}\right]$$

In the overlap region, $p^{-1} \ll r \ll \lambda^{-1}$, both solutions apply,

$$F_{<}^{(+)} \to N(p,\lambda) \frac{1}{\Gamma(1-i\xi)} \exp\left\{-\frac{\pi\xi}{2} - i\xi \log[p(r-z)]\right\},$$
$$F_{>}^{(+)} \to \exp\left\{i\xi \left[-\log\frac{\lambda(r-z)}{2} - \gamma_{\rm E}\right]\right\}$$

Factorization

Enforcing equality determines $N(p, \lambda)$, and then

$$\psi_{\vec{p}}^{(+)}(\vec{x}=0) = N(p,\lambda) = \Gamma(1-i\xi) \exp\left\{\frac{\pi}{2}\xi + i\xi\left[\log\frac{2p}{\lambda} - \gamma_{\rm E}\right]\right\}$$

Recall that this all-orders amplitude, combined with the all-orders soft function, determines the all-orders hard function Extend the factorization formalism to field theory: full QED with relativistic and quantum corrections for the electron

Factorization

$$\mathcal{M}^{(1)} = 2EZe^2 \int \frac{d^d L}{(2\pi)^d} \frac{1}{\mathbf{L}^2 + \lambda^2} \frac{1}{(\mathbf{L} - \mathbf{p})^2 - \mathbf{p}^2 - i0} \left[1 - \frac{1}{2E} \gamma^0 \not\!\!L \right]$$
$$= \frac{iZ\alpha}{\beta} \left[\left(\log \frac{2p}{\lambda} - \frac{i\pi}{2} \right) + \left(\frac{m\gamma^0}{E} - 1 \right) \left(-\frac{1}{2} \right) \right].$$

at one loop: two relevant momentum regions, $L \sim p$ (hard) and $L \sim \lambda$ (soft)

at two loops: contributions from $L \gg p$

General factorization formula:

$$\mathcal{M} = \mathcal{M}_S \mathcal{M}_H \mathcal{M}_{\mathrm{UV}}$$

Using asymptotic wavefunction methods, can extract hard function to all orders:

$$\mathcal{M}_{H}(\mu_{S},\mu_{H}) = \mathcal{M}_{S}^{-1}(\mu_{S}) \mathcal{M} \mathcal{M}_{\mathrm{UV}}^{-1}(\mu_{H})$$

\Rightarrow explicit, all-orders factorization (!)

$$\mathcal{M} = \mathcal{M}_{S}(\lambda/\mu)\mathcal{M}_{H}(p/\mu)\mathcal{M}_{\mathrm{UV}}(\Lambda/\mu)$$

22

With the explicit factorization formula,

 what is F(Z,E) as a field theory object? answer: leading-in-Z hard function

Factorization

$$\left\langle \left| \mathcal{M}_{H} \right|^{2} \right\rangle = F(Z, E) \left|_{r_{H}} \times \frac{4\eta}{(1+\eta)^{2}} \right.$$

 what is the quantity r appearing in F(Z,E)? Approximately the nuclear radius, but how to beyond this qualitative model? *answer: renormalization scale*

$$r^{-1}e^{\gamma_E} = \mu_{\overline{\mathrm{MS}}}$$

$$\mathcal{M}_{H} = \exp\left[i\xi\log\frac{2pe^{-\gamma_{E}}}{\mu_{S}} - i(\eta-1)\frac{\pi}{2}\right]\frac{2\Gamma(\eta-i\xi)}{\Gamma(2\eta+1)}\sqrt{\frac{\eta-i\xi}{1-i\xi\frac{m}{E}}}\sqrt{\frac{E+\eta m}{E+m}}\sqrt{\frac{2\eta}{1+\eta}} \times \left(\frac{2pe^{-\gamma_{E}}}{\mu_{H}}\right)^{\eta-1}\left[\frac{1+\gamma^{0}}{2} + \frac{E+m}{E+\eta m}\left(1-i\xi\frac{m}{E}\right)\frac{1-\gamma^{0}}{2}\right]$$

When matrix elements are computed for the beta decay process, large perturbative coefficients appear

Renormalization

$$\alpha^{-1} \sim \log^2 \frac{\Lambda_{\text{nuc}}}{m_e} \sim Z^2 \sim 100$$

Account for log enhancements by RG evolution

Symmetry argument

Renormalization

$$= \begin{bmatrix} \cdots \frac{(-eQ_e)(I\!\!L_1 + I\!\!L_2)\gamma^{\mu_2}}{(L_1 + L_2)^2 + i0} \frac{(-eQ_e)I\!\!L_1\gamma^{\mu_1}}{L_1^2 + i0} \end{bmatrix}$$
$$\begin{bmatrix} \cdots \frac{-eQ_Av^{\nu_2}}{v \cdot (K_1 + K_2) + i0} \frac{-eQ_Av^{\nu_1}}{v \cdot K_1 + i0} \end{bmatrix}$$
$$\begin{bmatrix} \cdots \frac{-eQ_Bv^{\rho_1}}{v \cdot (-P_1) + i0} \frac{-eQ_Bv^{\rho_2}}{v \cdot (-P_1 - P_2) + i0} \end{bmatrix}$$

sum over diagrams is invariant under $Q_A \leftrightarrow Q_B$, $Q_e \rightarrow - Q_e$

See that e.g.

and in the sum over diagrams at a fixed order in α , the amplitude is invariant

Can see that the anomalous dimension must be built from

 Q_e^2 , $Q_A Q_B$, $Q_e (Q_A - Q_B)$

In particular, with $Q_e = -1$, $Q_A = Z + 1$, $Q_B = Z$

the anomalous dimension at n loop order is a linear combination of

$$Z^i(Z+1)^i, \quad 2i \le n$$

26

Renormalization

Renormalization

$$\frac{\alpha (Z+1)}{d \log C} \sim \frac{+\alpha^2 (Z^2 + Z + 1)}{+\alpha^3 (Z^3 + Z^2 + Z + 1)} + \alpha^4 (Z^4 + Z^3 + Z^2 + Z + 1)$$

$$\alpha (1) + \alpha^{2} (Z(Z + 1) + 1) + \alpha^{3} (\#Z(Z + 1) + 1) + \alpha^{4} (Z^{2}(Z + 1)^{2} + \#Z(Z + 1) + 1)$$

we calculate this number

remaining undetermined coefficient at 4 loops

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0				
Z^1				
Z^2				
Z^3				
Z^4				

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0				
Z^1				
Z^2				
Z^3				
Z^4				

• no contributions $Z^m \alpha^n$ with m > n

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0				
Z^1				
Z^2	_			
Z^3	_	_		
Z^4	_	_	_	

• no contributions $Z^m \alpha^n$ with m > n

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0				
Z^1				
Z^2	_			
Z^3	_	_		
Z^4	_	_	_	

- no contributions $Z^m \alpha^n$ with m > n
- leading Dirac solution

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0				
Z^1	$\gamma_0^{(0)}=0$			
Z^2	_	$\gamma_1^{(0)}=-8\pi^2$		
Z^3	_	_	$\gamma_2^{(0)} = 0$	
Z^4	_	_	—	$\gamma_{3}^{(0)} = -32\pi^{4}$

- no contributions $Z^m \alpha^n$ with m > n
- leading Dirac solution

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0				
Z^1	$\gamma_0^{(0)}=0$			
Z^2	_	$\gamma_1^{(0)}=-8\pi^2$		
Z^3	_	_	$\gamma_2^{(0)} = 0$	
Z^4	_	_	—	$\gamma_{3}^{(0)} = -32\pi^{4}$

- no contributions $Z^m \alpha^n$ with m > n
- leading Dirac solution
- Z=0 limit (heavy-light current)

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0	$\gamma_0^{(1)}=-3$	$\gamma_1^{(2)} = -16\zeta_2 + \frac{5}{2} + \frac{10}{3}n_e$	$\gamma_2^{(3)} = (\text{see caption})$	$\gamma_3^{(4)} = (\text{see caption})$
Z^1	$\gamma_0^{(0)}=0$			
Z^2	_	$\gamma_1^{(0)} = -8\pi^2$		
Z^3	_	_	$\gamma_2^{(0)}=0$	
Z^4	_	_	_	$\gamma_3^{(0)} = -32\pi^4$

- no contributions $Z^m \alpha^n$ with m > n
- leading Dirac solution
- Z=0 limit (heavy-light current)

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0	$\gamma_0^{(1)}=-3$	$\gamma_1^{(2)} = -16\zeta_2 + \frac{5}{2} + \frac{10}{3}n_e$	$\gamma_2^{(3)} = (\text{see caption})$	$\gamma_3^{(4)} = (ext{see caption})$
Z^1	$\gamma_0^{(0)}=0$			
Z^2	_	$\gamma_1^{(0)} = -8\pi^2$		
Z^3	_	_	$\gamma_2^{(0)}=0$	
Z^4	_	_	—	$\gamma_3^{(0)} = -32\pi^4$

- no contributions $Z^m \alpha^n$ with m > n
- leading Dirac solution
- Z=0 limit (heavy-light current)
- symmetry linking different powers of Z

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0	$\gamma_0^{(1)}=-3$	$\gamma_1^{(2)} = -16\zeta_2 + \frac{5}{2} + \frac{10}{3}n_e$	$\gamma_2^{(3)} = (\text{see caption})$	$\gamma_3^{(4)} = (ext{see caption})$
Z^1	$\gamma_0^{(0)}=0$	$\gamma_1^{(1)} = \gamma_1^{(0)} = -8\pi^2$	$\gamma_2^{(2)} = \gamma_2^{(1)}$	$\gamma_3^{(3)} = \gamma_3^{(2)} - \gamma_3^{(0)}$
Z^2	_	$\gamma_1^{(0)} = -8\pi^2$		
Z^3	_	_	$\gamma_2^{(0)}=0$	$\gamma_3^{(1)} = 2\gamma_3^{(0)}$
Z^4	_	_	—	$\gamma_3^{(0)} = -32\pi^4$

- no contributions $Z^m \alpha^n$ with m > n
- leading Dirac solution
- Z=0 limit (heavy-light current)
- symmetry linking different powers of Z

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0	$\gamma_0^{(1)}=-3$	$\gamma_1^{(2)} = -16\zeta_2 + \frac{5}{2} + \frac{10}{3}n_e$	$\gamma_2^{(3)} = (\text{see caption})$	$\gamma_3^{(4)} = (ext{see caption})$
Z^1	$\gamma_0^{(0)}=0$	$\gamma_1^{(1)} = \gamma_1^{(0)} = -8\pi^2$	$\gamma_2^{(2)} = \gamma_2^{(1)}$	$\gamma_3^{(3)} = \gamma_3^{(2)} - \gamma_3^{(0)}$
Z^2	_	$\gamma_1^{(0)} = -8\pi^2$		
Z^3	_	_	$\gamma_2^{(0)}=0$	$\gamma_3^{(1)} = 2\gamma_3^{(0)}$
Z^4	_	_	—	$\gamma_3^{(0)} = -32\pi^4$

- no contributions $Z^m \alpha^n$ with m > n
- leading Dirac solution
- Z=0 limit (heavy-light current)
- symmetry linking different powers of Z
- remaining: $Z^2 \alpha^3$ and $Z^2 \alpha^4$

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0	$\gamma_0^{(1)}=-3$	$\gamma_1^{(2)} = -16\zeta_2 + \frac{5}{2} + \frac{10}{3}n_e$	$\gamma_2^{(3)} = (\text{see caption})$	$\gamma_3^{(4)} = (ext{see caption})$
Z^1	$\gamma_0^{(0)}=0$	$\gamma_1^{(1)} = \gamma_1^{(0)} = -8\pi^2$	$\gamma_2^{(2)} = \gamma_2^{(1)}$	$\gamma_3^{(3)} = \gamma_3^{(2)} - \gamma_3^{(0)}$
Z^2	_	$\gamma_1^{(0)} = -8\pi^2$	$\gamma_2^{(1)}$	$\gamma_3^{(2)}$
Z^3	_	_	$\gamma_2^{(0)}=0$	$\gamma_3^{(1)} = 2\gamma_3^{(0)}$
Z^4	_	_	_	$\gamma_{3}^{(0)} = -32\pi^{4}$

- no contributions $Z^m \alpha^n$ with m > n
- leading Dirac solution
- Z=0 limit (heavy-light current)
- symmetry linking different powers of Z
- remaining: $Z^2 \alpha^3$ and $Z^2 \alpha^4$

$$\gamma = \frac{d \log \mathscr{C}}{d \log \mu} = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0	$\gamma_0^{(1)}=-3$	$\gamma_1^{(2)} = -16\zeta_2 + \frac{5}{2} + \frac{10}{3}n_e$	$\gamma_2^{(3)} = (\text{see caption})$	$\gamma_3^{(4)} = (\text{see caption})$
Z^1	$\gamma_0^{(0)}=0$	$\gamma_1^{(1)} = \gamma_1^{(0)} = -8\pi^2$	$\gamma_2^{(2)} = \gamma_2^{(1)}$	$\gamma_3^{(3)} = \gamma_3^{(2)} - \gamma_3^{(0)}$
Z^2	_	$\gamma_1^{(0)}=-8\pi^2$	$\gamma_2^{(1)}$	$\gamma_3^{(2)}$
Z^3	_	_	$\gamma_2^{(0)}=0$	$\gamma_3^{(1)} = 2\gamma_3^{(0)}$
Z^4	_	_	_	$\gamma_{3}^{(0)} = -32\pi^{4}$

- no contributions $Z^m \alpha^n$ with m > n
- leading Dirac solution
- Z=0 limit (heavy-light current)
- symmetry linking different powers of Z
- remaining: $Z^2 \alpha^3$ and $Z^2 \alpha^4$

 \Rightarrow need $\gamma_2^{(1)}$ as missing ingredient for permille level analysis of beta decay

To isolated powers of Z, it is convenient to rearrange the perturbation series

$$\begin{aligned} \mathscr{L} &= \bar{h}_{v}^{(A)}(iv \cdot \partial + e(Z+1)v \cdot A)h_{v}^{(A)} + \bar{h}_{v}^{(B)}(iv \cdot \partial + eZv \cdot A)h_{v}^{(B)} \\ &+ G_{F} \ h_{v}^{(B)}\Gamma h_{v}^{(A)} \ \bar{\nu}\Gamma'e \end{aligned}$$

Introduce Wilson line field redefinition to (almost) decouple photons from heavy particles

$$\begin{split} h_{v}^{(A)} &= S_{v} h_{v}^{(A0)} & h_{v}^{(B)} = S_{v} h_{v}^{(B0)} \\ \mathscr{U} &= \bar{h}_{v}^{(A0)} (iv \cdot \partial + ev \cdot A) h_{v}^{(A0)} + \bar{h}_{v}^{(B)} iv \cdot \partial h_{v}^{(B)} \\ &+ G_{F} S_{v}^{\dagger} S_{v} h_{v}^{(B0)} \Gamma h_{v}^{(A0)} \bar{\nu} \Gamma' e \end{split}$$

Renormalization

Equivalent picture in terms of charge 1 heavy particle in background charge Z field

$$S_{v}(x) = \exp\left[iZe\int_{-\infty}^{0} ds \, v \cdot A(x+sv)\right] = \exp\left[iZe\left(\frac{i}{iv \cdot \partial + i0}v \cdot A\right)\right]$$

$$S_{v}^{\dagger}S_{v} = \exp\left[iZe\left(2\pi\delta(iv \cdot \partial)v \cdot A\right)\right]$$

$$1$$

$$\begin{bmatrix}1\end{bmatrix}$$

$$\begin{bmatrix}1\end{bmatrix}$$

Simplified calculation at fixed Z, and useful/ interesting relations between different powers of Z obtained by equating the two pictures

Renormalization

With this rearrangement, 3-loop computation reduced to 10 diagrams

Renormalization

basic idea:

• reduce to basis integrals

$$\begin{split} I^{(b)}(a_1, a_2, a_3, a_4, a_5, a_6) \\ &= \int (\mathrm{d}\omega)(\mathrm{d}k)(\mathrm{d}q)(\mathrm{d}p)\,\omega^b \, \frac{1}{[\omega^2 + (\boldsymbol{k} + \boldsymbol{p})^2]^{a_1}} \frac{1}{(\mathbf{p}^2)^{a_2}} \frac{1}{[(\boldsymbol{p} - \boldsymbol{q})^2]^{a_3}} \frac{1}{[\omega^2 + (\boldsymbol{k} + \boldsymbol{q})^2]^{a_4}} \frac{1}{(\mathbf{q}^2)^{a_5}} \frac{1}{\mathbf{q}^2 + \lambda^2} \times \\ &\times \frac{1}{(\omega^2 + \boldsymbol{k}^2)^{a_6}} \frac{1}{\omega^2 + \boldsymbol{k}^2 + \lambda^2} \,, \end{split}$$

 subset of integrals involving two momentum differences, evaluated by

1) use that λ (IR regulator) is the only scale

$$I \sim \lambda^{-6\epsilon} \implies I = \frac{-1}{6\epsilon} \lambda \frac{d}{d\lambda} I$$

2) isolate and evaluate sub divergences

3) evaluate remaining finite coefficient of $1/\epsilon$ at $\epsilon \to 0$

 remaining integrals reduced to previous step using integration by parts identities

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0	$\gamma_0^{(1)}=-3$	$\gamma_1^{(2)} = -16\zeta_2 + \frac{5}{2} + \frac{10}{3}n_e$	$\gamma_2^{(3)} = (\text{see caption})$	$\gamma_3^{(4)} = (\text{see caption})$
Z^1	$\gamma_0^{(0)} = 0$	$\gamma_1^{(1)} = \gamma_1^{(0)} = -8\pi^2$	$\gamma_2^{(2)} = \gamma_2^{(1)}$	$\gamma_3^{(3)} = \gamma_3^{(2)} - \gamma_3^{(0)}$
Z^2	_	$\gamma_1^{(0)} = -8\pi^2$	$\gamma_2^{(1)} = 16\pi^2 \left(6 - \frac{\pi^2}{3} \right)$	$\gamma_3^{(2)}$
Z^3	_	_	$\gamma_2^{(0)}=0$	$\gamma_3^{(1)} = 2\gamma_3^{(0)}$
Z^4	_	_	_	$\gamma_{3}^{(0)} = -32\pi^{4}$

Z^n Loops	1-loop	2-loop	3-loop	4-loop
Z^0	$\gamma_0^{(1)}=-3$	$\gamma_1^{(2)} = -16\zeta_2 + \frac{5}{2} + \frac{10}{3}n_e$	$\gamma_2^{(3)} = (\text{see caption})$	$\gamma_3^{(4)} = (\text{see caption})$
Z^1	$\gamma_0^{(0)}=0$	$\gamma_1^{(1)} = \gamma_1^{(0)} = -8\pi^2$	$\gamma_2^{(2)} = \gamma_2^{(1)}$	$\gamma_3^{(3)} = \gamma_3^{(2)} - \gamma_3^{(0)}$
Z^2	_	$\gamma_1^{(0)} = -8\pi^2$	$\gamma_2^{(1)} = 16\pi^2 \left(6 - \frac{\pi^2}{3} \right)$	$\gamma_3^{(2)}$
Z^3	_	_	$\gamma_2^{(0)}=0$	$\gamma_3^{(1)} = 2\gamma_3^{(0)}$
Z^4	_	_	_	$\gamma_{3}^{(0)} = -32\pi^{4}$

 we disagree with an old result in the literature [Jaus and Rasche, PRD 35, 3420 (1987)]. Only diagrams (a), (b), (c) considered. Unregulated subdivergences. Implications

Numerically important modifications to nuclear beta decay rates

transition	$(\Delta a) \times Z^2 \alpha^3 \log(\Lambda/m)$
$^{10}C \rightarrow {}^{10}B$	-0.6×10^{-4}
$^{14}\mathrm{O} \rightarrow ~^{14}\mathrm{N}$	$-1.1 imes 10^{-4}$
$^{26m}Al \rightarrow {}^{26}Mg$	-3.2×10^{-4}
$^{46}V \rightarrow {}^{46}Ti$	-10.5×10^{-4}
$^{54}\mathrm{Co} \rightarrow ^{54}\mathrm{Fe}$	$-14.6 imes10^{-4}$

Current implementations of three-loop corrections based on "heuristic ansatz" of Sirlin and Zucchini, which incorporated (incorrect) log-enhanced term of Jaus and Rasche

$$RC = (1+\delta_R')(1+\Delta_R^V)(1+\delta_{\rm NS}-\delta_C)$$
 table gives shift in " δ_R' "

The Fermi function can be motivated by large Z or small velocity. Neutron beta decay has neither.

The one-loop correction, and a Fermi function ansatz for higher-order corrections, exhibit large perturbative corrections. Where would these come from?

$$1 + 4.6 \,\alpha + 16 \,\alpha^2 + 34 \,\alpha^3 + \dots$$

The case Z=0

Previous treatments have not separated scales

The usual Fermi function does not apply to neutron beta decay (Z=0). Differences starting at two loop order

Recall the hard function for the Schrodinger-Coulomb problem (similar for Dirac-Coulomb),

$$\mathscr{M}_{H}^{(1)} = \left[\frac{iZ\overline{\alpha}}{\beta}(-4p^{2}/\mu^{2} - i0)^{-\epsilon}\right] \left[\frac{-1}{2\epsilon}\right]$$

The case Z=0

$$\mathcal{M}_{H}^{(2)} = \left[\frac{iZ\overline{\alpha}}{\beta}(-4p^{2}/\mu^{2} - i0)^{-\epsilon}\right]^{2} \left[\frac{1}{8\epsilon^{2}} + \frac{\pi^{2}}{12} + 5\zeta(3)\epsilon + \mathcal{O}(\epsilon^{2})\right]$$

$$\mathscr{M}_{H}^{(3)} = \left[\frac{iZ\overline{\alpha}}{\beta}(-4p^{2}/\mu^{2} - i0)^{-\epsilon}\right]^{3} \left[\frac{-1}{48\epsilon^{3}} - \frac{\pi^{2}}{24\epsilon} - \frac{13\zeta(3)}{6} + \mathscr{O}(\epsilon)\right]$$

Note the presence of a new "scale", associated with the time-like process of electron+proton production

Idea: resum large logarithms associated with the ratio of scales:

$$i\pi\log\frac{-\vec{p}^2-i0}{\vec{p}^2} = \pi^2 \approx 10$$

These logarithms are associated with the dependence on soft factorization scale μ_S ,

 $\mathcal{M} = \mathcal{M}_{S}(\lambda/\mu_{S})\mathcal{M}_{H}(p/\mu_{S}, p/\mu_{H})\mathcal{M}_{\mathrm{UV}}(\Lambda/\mu_{H})$

Scale dependence determined by soft anomalous dimension, known to all orders (heavy-heavy cusp anomalous dimension for electron-proton system)

$$\mathcal{M}_{H}(\mu_{S+}) = e^{i\alpha\phi_{\beta}} \exp\left[\frac{\pi\alpha}{2\beta}\right] \mathcal{M}_{H}(\mu_{S-}^{2}) \qquad \mu_{S\pm} = \pm 4\vec{p}^{2} - i0$$

irrelevant phase
enhancement factor
"normal" perturbative series, without large logs

The case Z=0

The case Z large

A different counting is needed when Z becomes large (e.g. Pb or U)

$$Z \sim L^2 \equiv \log^2(\Lambda/m) \sim \alpha^{-1}$$

$$\log\left(\frac{C(\mu_L)}{C(\mu_H)}\right) = \left[-\gamma^{(0)}(Z\alpha_L)L\right] + \left[b_0\alpha_L L^2 \frac{(Z\alpha_L)^2}{2\sqrt{1-(Z\alpha_L)^2}}\right] + \left[b_0^2\alpha_L^2 L^3 \frac{(Z\alpha_L)^2(3-2(Z\alpha_L)^2)}{6(1-(Z\alpha_L)^2)^{\frac{3}{2}}} - \alpha_L L\gamma^{(1)}(Z\alpha_L)\right]$$
$$\alpha^{-\frac{1}{2}} \qquad \alpha^0 \qquad \alpha^{\frac{1}{2}}$$

 $\gamma = \sum_{n=0}^{\infty} \sum_{i=0}^{n+1} \left(\frac{\alpha}{4\pi}\right)^{n+1} \gamma_n^{(i)} Z^{n+1-i} \equiv \gamma^{(0)}(Z\alpha) + \alpha \gamma^{(1)}(Z\alpha) + \dots$

⇒ need all (or at least high) orders for $\gamma^{(0)}$ and $\gamma^{(1)}$ to go beyond O(1)

 $\gamma^{(0)}$ is known to all orders (Dirac limit):

$$\gamma^{(0)} = \sqrt{1 - (Z\alpha)^2 - 1}$$

A simple "exploratory spirit" ansatz for $\gamma^{(1)}$ was previously used [Wilkinson 1997]*

$$\gamma^{(1)} = -\frac{1}{2} \left[(Z\alpha) + 0.57(Z\alpha)^2 + 0.50 \frac{(Z\alpha)^3}{1 - (Z\alpha)} \right]$$
$$= -\frac{1}{2} (Z\alpha) - 0.28(Z\alpha)^2 - 0.25 \left[(Z\alpha)^3 + (Z\alpha)^5 + (Z\alpha)^7 + \dots \right]$$
$$-0.25 \left[(Z\alpha)^4 + (Z\alpha)^6 + (Z\alpha)^8 + \dots \right]$$

We now know

The case Z large

$$\gamma_{\text{odd}}^{(1)} = \frac{1}{2} \frac{\partial}{\partial(Z\alpha)} \gamma^{(0)} = \frac{-Z\alpha}{2\sqrt{1 - (Z\alpha)^2}}$$
$$= -\frac{1}{2} (Z\alpha) - \frac{1}{4} (Z\alpha)^3 - \frac{3}{16} (Z\alpha)^5 - \frac{5}{32} (Z\alpha)^7 + \dots$$

$$\gamma_{\text{even}}^{(1)} = \frac{(Z\alpha)^2}{(4\pi)^3} \gamma_2^{(1)} + \dots = 0.216 (Z\alpha)^2 + \dots$$

* $0.50 \approx (0.48 + 1 + 0.57 + 0.16)/4$

Summary

- An all-orders explicit demonstration of factorization (implies answer for certain arbitrary loop order Feynman diagrams)
- Systematic high order evaluation of radiative corrections for neutron and nuclear beta decay for V_{ud}
- Potential applications for other beta decay observables, reactor neutrino cross sections and flux; muon conversion; ...

Thank you