Beam Test of the ZDC EMCal Prototype with LYSO+SiPM

Wen-Chen Chang, Kai-Yu Cheng, Tatsuya Chujo, Yuji Goto, Chia-Yu Hsieh, Motoi Inaba, Subaru Ito, Kentaro Kawade, Yongsun Kim, Chia-Ming Kuo, Chih-Hsun Lin, Po-Ju Lin, Rong-Shyang Lu, Jen-Chieh Peng

Comparison of various crystals

	X 0	LY (ph/MeV)	T dep. of LY (%/K)	Decay time (ns)	λ _{em} nm
PbWO ₄ (CMS)	0.89 cm	200	-1.98	5 (73%) 14 (23%) 110 (4%)	420
LYSO	1.14 cm	30,000 (market standard)	-0.28	36	420
GAGG	1.59 cm	40,000 - 60,000		50 - 150	520
SciGlass	2.4-2.8 cm	>100		22 - 400	440-460

ZDC ECAL Prototype with LYSO Crystals

One crystal: 7.12 mm x 7.12 mm x 88.3 mm 8x8 array: 56.96 mm x 56.96 mm

Readout for the ZDC ECAL Prototype with LYSO Crystals

- Designed by Chih-Hsun Lin of Academia Sinica
- 64 channels
- Trigger:
 - Self-triggered
 - Can accept external timing signal → needs to be studied
 - May accept external trigger → needs to be studied

Test Setup

Tests with Co-60

We use Co-60 and LYSO intrinsic radiation to calibrate the detector.

- @HV = 27.00V
- ➔ 1.330 MeV @ 17005 digit

➔ 1.330 MeV / 17005 digit ~ 7.8e-5 MeV / digit Saturated digit = 11, 0000 digit

→ Saturated at 8.6MeV This HV/gain is too high for our beam test condition.

• HV setting range = 24.7V to 28.2V

Why SiPM?

- Available readout board with CITIROC1A from wee roc for multichannel SiPM (Chih-Hsun Li, Academia Sinica) → can be used for first prototype study
- Need a suitable photodetector for critical fluence value $(10^{14}/cm^2)$
 - CMS ECAL
 - barrel: APD, up to $4 \times 10^{13}/cm^2$, gain: 1 100
 - endcap: VPT (vacuum phototriodes), up to $7 \times 10^{15}/cm^2$
 - CMS MTD BTL (LYSO tiles with SiPM readout)
 - radiation (4/ab): $2 \times 10^{14}/cm^2$, gain: 2×10^5

SiPM Performance vs Number of Photons

- Need the fraction of fired microcells of a SiPM below 70% for a linear response
- Number of microcells in currently used SiPM: 18,980
 - the one from HPK used by CMS BTL has 40,000 microcells
- LYSO light yield for 500MeV energy deposit: 500MeV × 40,000 photons/MeV × 0.2 (photon detection efficiency) × 0.25 (light collection efficiency) = 1,000,000 photons

Beam Test @ ELPH

- A beam test with positrons was conducted at the ELPH, Tohoku University, between **15 to 21 February 2024**
- Beam time: ~36 hours (**19 to 21 February 2024**)
- Beam energy: 47.18 MeV up to 823.26 MeV
- Rate: 1,000 3,000 Hz
- Participants: RIKEN, Tsukuba University, Tsukuba University of Technology, Sejong University, EIC-Taiwan

Beam Test @ ELPH

Run list

	Run range	Source/Beam	Purpose	
HV Scan	1 - 20	Co60 (1 - 6, 20) Na22 (7 - 19)	Verify gains	
"Background"	21 - 33	Intrinsic radiation	Understand instrinsic radiation rate with threshold cuts	
Gain Calibration	33 - 36	Na22 (34 - 37)	Calibrate each channel	
HV and Beam Energy Scan	41 - 99	Beam (47 - 823 MeV)	Understand detector performance and study energy resolution and shower shapes	
Position Scan	101 - 129	Beam (197 MeV)		
HV and Beam Energy Scan at Low Energy	129 - 157	Beam (< 297 MeV)		
With Absorbers	160 - 225	Beam (197 - 823 MeV)		
Rotation	227 - 238	Beam (98, 197, 297 MeV)	Understand detector performance	

Clustering

Items to be studied

- Detector performance
- Comparison between data and simulation
- E_{max} vs E_{beam} at different SiPM HVs
- Hit multiplicity
- Energy spectra (E_{max}, E_{3x3}, E_{5x5})
- Shower shapes (E_{max}/E_{5x5}, E_{3x3}/E_{5x5}, E_{max}/E_{3x3}, E_{2x5}/E_{5x5}, σ_X, σ_Y, ...)
- Beam profile
- Energy resolution as a function of beam energy

Channel-by-Channel Gain Calibration

- Channel-by-channel gain calibration was performed using radiation source and beam, respectively
- The calibration obtained with the radiation source is not significantly different from the one obtained with high energy beam

Emax vs Beam Energy

Emax vs Ebeam at different SiPM HVs

• Detailed analysis with more runs is being carried out

Number of Hits vs Beam Energy

To be compared with simulation

Number of Hits vs Emax

• Temporarily require to have at least 3 hits

Cluster Energy

• To be compared with simulation

Shower Shapes

• To be compared with simulation

Beam Profile

Beam position is calculated with energy weighted method

Shower Spread

"Standalone" Simulation

• The first round of simulation with different beam energies, 4X₀ W absorber, and different rotation angles was done

Preliminary Simulation Results 197.9 MeV positron beam with 4X₀ W abosrbers

23

Simulation with "Realistic Beam"

Very Preliminary Simulation Results

Energy(MeV)

Future Plan:

- Finalize the analysis of beam test data as soon as we can
- Target at another beam test at ELPH in October
 - LYSO + APD
 - PbWO₄ + SiPM
 - GAGG + APD
 - Combine with other detectors
- Perform simulation studies for the final ZDC EMCal design

Summary

- We had the first beam test for the prototype of ePIC ZDC EMCal with LYSO+SiPM at ELPH
- Both data analysis and simulation are on-going
- We hope to be able to test different combinations of crystals and photodetectors in October