INTT dN/dn update

Cheng-Wei Shih National Central University

March 6th, 2024 INTT meeting

Tracklet counting with reco/true zvtx

Z resolution seems not to affect the final counting too much (even in low multiplicity)

Generator level **RECO Z** TRUE Z

Cluster ϕ distribution

Inner barrel

Spikes: the overlap region in INTT due to the design

Cheng-Wei Shih (NCU, Taiwan)

SPHE

Outer barrel

Mega (3/4-cluster) track finder

- Correct the cluster φ and radius based on the vertex XY
- 4-cluster track \rightarrow 4-nested loops
 - One cluster in each sub layer (INTT: two sub-layers for each barrel)
 - Same Z strip index for the clusters in each INTT barrel
 - Searching window $|\Delta \phi| < 2$ degrees for each next-nest loop
 - The pair of innermost-sub-layer and outermost-sub-layer clusters links to the zvtx
 - Fit the pair with polynomial 0 in R- θ plane
 - Keep the proto-4-cluster track for the further selection after looping
- 3-cluster track \rightarrow 3-nested loops
 - Two cases: 2 inner + 1 outer or 1 inner + 2 outer
 - One cluster in each sub layer
 - Same Z strip index for the clusters in each INTT barrel
 - Searching window $|\Delta \phi| < 2$ degrees for each next-nest loop
 - The pair of relatively inner sub-layer and relatively outer sub-layer clusters links to the zvtx
 - Fit the pair with polynomial 0 in R- θ plane
 - Keep the proto-3-cluster track for the further selection after looping

INTT meeting

Mega (3/4-cluster) track finder

- Beginning with 4-cluster track (More tight selection)
 - Sort over the proto-4-cluster tracks based on the fit reduced χ^2
 - Start from the best one, if the reduced $\chi^2 < certain cut value \rightarrow$ one 4-cluster track found. Mark the 4 clusters as used
 - Move to the next track. Skip the track as long as there is one cluster marked as used
- Check the 3-cluster track with the same cluster-mark map
 - Combine two cases when checking
 - Same procedures as that of 4-cluster track

SPHE

Cut value determination

4-cluster track

Cut value for 3-cluster track: 0.0005

Cheng-Wei Shih (NCU, Taiwan)

3-cluster track

Event display of 3-cluster track

Color no correspondence b/w two plots

Negative radius: track with two outer clusters

SPHE

Cheng-Wei Shih (NCU, Taiwan)

٢Z

The 4-cluster track

By design, we shouldn't see any 4-cluster tracklet

Cheng-Wei Shih (NCU, Taiwan)

INTT meeting

SPHE

80k MC events True zvtx with 0.5 mm dummy error, selected Z range: full range

The 3-cluster track

Cheng-Wei Shih (NCU, Taiwan)

INTT meeting

SPHE

80k MC events True zvtx with 0.5 mm dummy error, selected Z range: full range

Mega track finding ratio

INTT meeting

Mega Track finding ratio: N_{recoz} / N_{truez} True Z: with 0.5 mm dummy error recoZ: Z resolution corresponding to the centrality bin

The mega track finding efficiency is quite high

```
Cheng-Wei Shih (NCU, Taiwan)
```


Z resolution check

Without mega tracklet removal

The mega tracks (INTT design) barely affects the Z vertex resolution

Cheng-Wei Shih (NCU, Taiwan)

SPHE

Mega track removal prior to the zvtx reconstruction (True zvtx with dummy error 0.5 mm)

Workflow of event combiner

Analysis workflow

A modified workflow is developed, shown on RHS We would like to confirm 0 with the physics&analysis coordination and TG conveners that this workflow, specifically for Run23 data, complies with the publication guideline

03/08/2024

Cheng-Wei Shih (NCU, Taiwan)

The structure of available ntuplizer

macros/intt_run20869.root (centrality_run20869.root)

MBD/ZDC/centrality/EP part

event	= 3
clk	= 58491
femclk	= 58462
is_min_bias	= 1
MBD_centrality	= 0.66
MBD_z_vtx	= -13.4907
$MBD_south_charge_sum = 2.39753$	
$MBD_north_charge_sum = 96.5587$	
MBD_charge_sum	= 98.9563
MBD_charge_asym	n = -0.951544

Directoy: /gpfs/mnt/gpfs02/sphenix/user/cdean/software/analysis/dNdEta_Run2023/

INTT part (data)

event_counter	= 1
INTT_BCO	= 727877790848
NClus_Layer1	= 356
NClus	= 669
ClusLayer	<pre>= (vector<int>*)0x3240140</int></pre>
ClusX	<pre>= (vector<float>*)0x38dddf0</float></pre>
ClusY	<pre>= (vector<float>*)0x3237130</float></pre>
ClusZ	<pre>= (vector<float>*)0x3171df0</float></pre>
ClusR	<pre>= (vector<float>*)0x26222c0</float></pre>
ClusPhi	<pre>= (vector<float>*)0x2e02d20</float></pre>
ClusEta	<pre>= (vector<float>*)0x324a640</float></pre>
ClusAdc	<pre>= (vector<unsigned int="">*)0x2ac6dc0</unsigned></pre>
ClusPhiSize	<pre>= (vector<float>*)0x32434f0</float></pre>
ClusZSize	<pre>= (vector<float>*)0x277c260</float></pre>
ClusLadderZId	<pre>= (vector<unsigned char="">*)0x326664</unsigned></pre>
ClusLadderPhiId	<pre>= (vector<unsigned char="">*)0x3929a4</unsigned></pre>
ClusTrkrHitSetKey = (vector <unsigned int="">*)0x245b9</unsigned>	
ClusTimeBucketId = (vector <int>*)0x316fd70</int>	

INTT-MBD event combiner

- Code: <u>Github</u>
- Same files for testing, All events included

INTT meeting

Tree structure posit merge

[root [2] EventTr	ee->Show(1)
=====> EVENT:1	
event_counter	= 1
INTT_BCO	= 727877790848
NClus_Layer1	= 356
NClus	= 669
ClusLayer	<pre>= (vector<int>*)0x26228d0</int></pre>
ClusX	<pre>= (vector<float>*)0x1a60aa0</float></pre>
ClusY	<pre>= (vector<float>*)0x2054040</float></pre>
ClusZ	<pre>= (vector<float>*)0x11797d0</float></pre>
ClusR	<pre>= (vector<float>*)0x268af40</float></pre>
ClusPhi	<pre>= (vector<float>*)0x2849140</float></pre>
ClusEta	<pre>= (vector<float>*)0x284a160</float></pre>
ClusAdc	<pre>= (vector<unsigned int="">*)0x2848640</unsigned></pre>
ClusPhiSize	<pre>= (vector<float>*)0x2855660</float></pre>
ClusZSize	<pre>= (vector<float>*)0x2855cd0</float></pre>
ClusLadderZId	<pre>= (vector<unsigned char="">*)0x285dc40</unsigned></pre>
ClusLadderPhiId	= (vector <unsigned char="">*)0x20dd530</unsigned>
ClusTrkrHitSetK	ey = (vector <unsigned int="">*)0x283fda0</unsigned>
ClusTimeBucketId = (vector <int>*)0x210d030</int>	
event	= 3
clk	= 58491
femclk	= 58462
is_min_bias	= 1
MBD_centrality	= 0.66
MBD_z_vtx	= -13.4907
MBD_south_charg	$e_sum = 2.39753$
$MBD_north_charge_sum = 96.5587$	
MBD_charge_sum = 98.9563	
MBD_charge_asym	m = -0.951544

Cheng-Wei Shih (NCU, Taiwan)

To understand the INTT data

We are in the half way toward fully understand the INTT data

Very nice <u>website</u> (plot database for all years) made by Genki

Idea: expand the capability of the website to check the data in more aspects (ladder dependency, before/post hot channel masking, etc.) Benefit: not only for the run23 analyses, but also toward the run24 data finalization

Summary

- The O(mm) z resolution seems not to affect the cluster counting too much New algorithm of mega tracklet finderwas implemented
- - Mega tracks: second-order effect on the track counting, first order on zvtx reconstruction
- 3-cluster tracks are visible by INTT simply because of its design
 - No 4-cluster tracks
- The more central the collision is, the higher probability to have mega tracks The effects on the zvtx reconstruction seems to be really minor
- One version of the INTT-MBD event combiner is ready
- We are in the half way toward fully understand the INTT data

Todo list

- Data quality check
- To check how the residual affects the resolution of vtx XY and Z
- Beam width XY
- PCM meeting this Friday

Back up

Iracklet, two methods

- Proto-tracklets: $|\Delta \phi| \leq 3.5$ degrees, and pair links to zvtx ($|\Delta \eta| < \sim 0.25$) Reco tracklet n: 3-point track (zvtx, inner and outer clusters)
- 1. Loose (inclusive) :
 - Single cluster is allowed to be involved in multiple proto-tracklets
 - Have the result for the whole run
 - Signal extraction by the background subtraction
- 2. Tight:
 - 1. Keep all the qualified proto-tracklets

 - 2. Beginning with the pair with smallest $|\Delta \phi|$, and marked the clusters as "used" 3. Pair discarded as long as one cluster is the "used" one
 - 4. $|\Delta \phi|$ up to 1 degree
 - Counting method \rightarrow can be event by event

- reco zvtx resolution w/ mega cluster finder (use true z to pick up)
- reco zvtx resolution w/o mega cluster finder
- mega cluster finder efficiency true z / with reco z without mega cluster finder
- Tracklet counting with true zvtx / reco Z without mega cluster finder
- Method inclusive background study with reco Z without mega cluster finder
- True Z
 - tracklet counting w/ and w/o mega cluster finder

- TrackCounting_TrueZ_NoMegatrackRemoval
- TrackCounting_RecoZ_NoMegatrackRemoval
- TrackCounting_RecoZ_NoMegatrackRemoval_BKGStudy_InnerPhiRotation
- RecoEvtZ_noMegaTrackRemoval
- RecoEvtZ_withMegaTrackRemoval_TrueZGiven
- Mega track finding effi
- Ttrackcounting_recoZ_withMegatrackremoval?

- TrackCounting_TrueZ_NoMegatrackRemoval
- TrackCounting_RecoZ_NoMegatrackRemoval_BKGStudy_InnerPhiRotation
- RecoEvtZ_noMegaTrackRemoval
- RecoEvtZ_withMegaTrackRemoval_TrueZGiven

- 3/4-cluster finder
- True/Reco zvtx, N tracklet counting
- Reco zvtx, background/signal overlap
- 3-cluster tracklet -> how it affects the XY and zvtx
- Residual study -> zvtx
- Official F4A module for the INTT zvtx

2787 nhits : 17170 N_clu_south : 2385 N_clu_north : 2446 Nclu inner : 2302 Nclu outer : 2529

INTT meeting

