Simulation Study of the Gen-II CALI prototype

Weibin Zhang

UC Riverside

2024-03-06

Gen-II Prototype

- Beam test of Gen-I prototype in Hall D at JLab on Jan 23, 2023 Instruments 2023, 7(4), 43
- 40 channels in Gen-I prototype
- 300 channels in Gen-II prototype
- 4 hexagonal layers +10 square layers
module with square tiles

Test Position

- $\gtrsim 7 \mathrm{~m}$ away from the IP
- North of the beampipe, $\sim 47 \mathrm{~cm}$ away from the beampipe center
$(3.2<\eta<3.6)$
- Roughly alighted in height
- Be parallel to the beampipe

Simulation

- DD4HEP framework
- 7 layers of hexagonal cell $\left(7.9 \mathrm{~cm}^{2}\right), 13$ layers of square cell ($22.5 \mathrm{~cm}^{2}$)
- 7 m away from the beam source, $0<\theta<0.001$
- Hepmc3 file for π^{0} events, making sure the 2 photons hit the prototype

Event Display: 40 GeV Photon

Sampling Fraction

- $\mathrm{sf}=0.01$

Event Energy

5 GeV photon
3.145/5~60\%

15 GeV photon
12.1/15 ~ 80\%

30 GeV photon
27.85/30~93\%

- sf is energy dependent

Hit Energy Distribution

hit energy (GeV)

Layer Energy Distribution

Reconstruction: Eicrecon

Imaging topological cluster algorithm

```
app->Add(new JOmniFactoryGenerato
    .neighbourLayersRange = ^1,
    .localDistXY = {55*dd4hep::mm, 50*dd4hep::mm},
    // .layerDistEtaPhi = {0.9, 0.5},
    // .sectorDist = 10.0 * dd4hep::cm,
    .minClusterHitEdep = 10.0 * dd4hep::MeV,
    .minClusterCenterEdep = 1000.0 * dd4hep::MeV,
    .minClusterEdep = 3000:0** dd4hep: :MeV,
    .minClusterNhits = 1,
    },
    app // TODO: Remove me once fixed
));
```


Cluster

cluster_energy

$\pi^{0}:$ Photon Distributions

- The larger the opening angle, the larger the energy difference
- The lower energy photon can go to very low energy
- The higher the π^{0} energy, the smaller the minimum opening angle, the harder to distinguish the decay photons

Event Display: $40 \mathrm{GeV} \pi^{0}$

π^{0} : Number of Clusters

$\Delta \theta=9-10 \mathrm{mrad}$
nclusters

$\Delta \theta=7-8 \mathrm{mrad}$ nclusters

$\Delta \theta=10-11 \mathrm{mrad}$ nclusters

$$
\Delta \theta=8-9 \mathrm{mrad}
$$

nclusters

$\Delta \theta=11-12 \mathrm{mrad}$ nclusters

π^{0} : Cluster Energy

$\Delta \theta=9-10 \mathrm{mrad}$ Cluster energy

$\Delta \theta=\underset{\text { Cluster energy }}{7-8 \mathrm{mrad}}$

$\Delta \theta=10-11 \mathrm{mrad}$ Cluster energy

$\Delta \theta=\underset{\text { clustere energy }}{8-9 \mathrm{mrad}}$

$\Delta \theta=11-12 \mathrm{mrad}$ Cluster energy

π^{0} : Invariant Mass
$\Delta \theta=6-7 \mathrm{mrad}$ invariant mass

$\Delta \theta=9-10 \mathrm{mrad}$ invariant mass

$\Delta \theta=7-8 \mathrm{mrad}$ invariant mass

$\Delta \theta=10-11 \mathrm{mrad}$ invariant mass

$$
\Delta \theta=\underset{\text { invariant mass }}{8-9} \mathrm{mrad}
$$

Summary

- Simulation of high energy photon and π^{0} with the Gen-II prototype
- Cluster reconstruction with the ImagingTopological algorithm
- Reconstruct the π^{0} events
- Next step: rate study in STAR pp collision environment

Backup

Invariant Mass

$$
m=\sqrt{\left(e_{1}+e_{2}\right)^{2}-\sum_{i=x, y, z}\left(e_{1} \frac{i_{1}}{l_{1}}+e_{2} \frac{i_{2}}{l_{2}}\right)^{2}}
$$

Seperating Clusters In Square Cells

- Need a thin cluster: high minClusterHitEdep
- A large seperation between the two decayed photons

Seperating Clusters

- Hexagon side: $s=1.74 \mathrm{~cm}$
- Seperation length: $d x=6 \times s=10.44 \mathrm{~cm}$

