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4x 3x3 mm? 15 um SiPM’s in parallel per channel.

Every channel’s bias can be set independently, every channel’s
SiPM current read independently.

Lots of information at expert’s fingertips. This was important at
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times, for tests/commissioning and diagnosing issues. | think we

say it was worth the effort.

A lesson learned:

Choose your voltage reference chips carefully!
We had problems due to small shifts of reference
voltage after radiation damage. Recovered by
periodic bias voltage adjustments based on LED

data.

- might choose to feed in external V ref in fwd ECAL



fwd ECAL bias requirements

e operating bias voltage range covering at least 25V to 47 V
e thisis-10V to +6 V overvoltage + Vg, (38 +/- 3 V spec)
e -10Vis “standard” for no-gain tests, could be -4 V, but anyway not difficult
e +6 Vis well over recommended overvoltage (4 V), maybe we only need +4 V?
e adjustable slope temperature compensation, with monitoring
e overall stability of overvoltage <10 mV (1% gain stability if we used V,, =1V),

e support bias current up to 2.5 mA per tower (4x 6x6 mm? SiPM’s) PERHAPS REDUCE
e current limiting (to protect SiPM and regulator channel)
* monitor SiPM current over the supported range
e ideally with enough resolution (~10 nA) to make useful IV curves in situ
e certainly with enough resolution (~1 uA) to relate dark noise in readout to current
e absolute accuracy (at least initial) of bias voltage 0.5%; after bench calibration 0.05%
e this enables setting voltages based on Hamamatsu data (which of course would also
require a plan to track that data to installed SiPM boards)
e granularity of voltage setting & temperature compensation: at least, every SiPM board (4
readout channels)
e granularity of current monitoring: probably at least every SiPM board



bias schematic block diagram
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side” current monitor (if any).
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bias schematics detail (STAR FCS ECAL)
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comments on other bias approaches

e |Instead of a full 0 to 47 V regulator on each bias channel, we could use a ‘trim DAC’ with
e.g. 5 V range together with a common 25 to 47 V main regulator feeding all. Why not?

e |tis sometimes useful to be able to set specific channels to voltages more than 5V
different from others. For example in mapping tests, or to deal with a failed channel.

e Current limiting (without voltage drop) per channel is an essential feature and is
inherent in this regulator design anyway. It would have to be added as a separate

stage if we used a standard DAC IC for ‘trim DAC’ function.
* |Instead of DC coupled readout, if we used AC coupled readout we could just monitor the
current and/or trim the voltage there (on readout side, near 0 Volts).

 Time-dependent rates, e.g. due to abort gap, may shift the baseline. Definitely a
worry at RHIC, maybe not at EIC? Nevertheless, it is avoidable, DC coupling feasible.



STAR FCS — measured noise

2018-11-30
17:14:11
_0,2.2M||15p) :
142 pV (DC to ~ 30 MHz)

Meets specs, not much
more to say.

Note: Depends on using a

good type of feedback
resistor...
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3
Meas Results B
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Waveform
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Mean 39.087 pv
o (S-dev) 141.81 p¥




STAR FCS — transient response/recovery and output impedance

Complete recovery from
large signal in about 9 ps.

Briefly after a large signal,
voltage will be out of spec by
more than 10 mV though.

E.g. with 100 nF capacitance
for fwd ECAL, peak deviation
for full scale 100 GeV signal
will be 43 mV.

But, can correct gain by
history of large pulses, if
necessary.

10 reyvised new regulator (301/47pF,  Vout, ext 5.6uF AC coupled
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400 pC pulse load
(~10 GeV in fwd ECAL)
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STAR FCS — transient response/recovery and output impedance
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+52 V supply scheme

This is treated as just another LV supply to the FEB, same as the +15 V &c.

e Upto9 FEB on alocal LV cable on the detector, in some locations fewer

e Upto 2local LV cables connect to external LV cable going to rack(s)

e connection at a patchpanel mounted at outer perimeter of fwd ECAL detector
e 16 external LV cables / PS groups per half of the detector (North/South)
e Upto 17 FEB served by an external LV cable / PS group

* North and South will connect to separate racks
e 452V supply from MPOD (MPV8060I, 60V 1 A 50 W channels)

* |n same crate as other LV channels, to take advantage of MPOD “group” on/off/trip functions

see backup slide for (tentative) arrangement of power groups on detector



serialization

The SiPM board will have a DS2411 “silicon serial number” chip

* readable through FEB/DAQ slow controls

e also of course read and used in production test of SiPM boards
e Hamamatsu test info for SiPM’s will be associated to board S/N

The FEB board(s) will also have an electronic serial number(s) of some kind
* readable through slow controls
e used in production test

e our voltage calibration of bias regulator channels will be associated to board S/N

Database to implement this stuff is TBD.
But the hardware and test plans definitely will be developed with this idea in mind.



conclusions

 WEe’ll adopt a basically similar scheme as STAR FCS for the SiPM biasing

 Some simplifications of the circuit details perhaps, to be explored soon, mainly
for cost & size reduction

e STAR FCS bias scheme already meets our requirements as-is

 Raw external voltage to feed the FEB bias regulator channels will be handled as any
other LV supply

e Anticipate using MPOD for this and all LV channels

e It should be a reasonable low noise supply, but there is no requirement for
precision regulation






local power cable

A 31 power drops per N/S half detector
4 drops with 6 FEB
10 drops with 7 FEB
13 drops with 8 FEB
4 drops with 9 FEB

incoming power group connects to 2 power drops at patchpanel

(82.677) 7 (shown as green box here)
we can say (e.g.) max 17 FEB per group
max PS power (to feed ~15 VDC load) ~48 W
136.220 nice fit to 50W MPOD LV modules

=> 16 power groups per N/S half detector
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2 of 4 bias regulator / current monitor channels on STAR FCS ECAL FEB
with temperature compensation circuits, all DAC’s, and monitor mux/ADC
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single-sided assembly (for simplicity), could be done smaller if necessary

also, probably will simplify the circuit a little in ePIC version
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