News - 03/12/2024

- EIC Project Detector R&D
 - FY24 plan (p2); contracting in progress, mid-year report due Feb 29, 2024
 - Detector R&D Day on March 25, 2024, Detector R&D annual review in August 2024 with deadline for submission July 1, 2024
- ePIC TOF Project Engineering Design
 - Mechanical engineering on support structure and cooling: <u>Mechanical PED</u>
 - BTOF (and FTOF?) module prototyping in preparation
- ePIC TOF Simulation
 - TOF geometry: Zhenyu updated TOF according to <u>latest geometry database</u> in DD4HEP <u>#564</u> Wei: will update the FTOF design
 - TOF in tracking Nicolas et al.: re-check FTOF material budget impact
 - TOF PID reconstruction Oskar et al.: TOF reconstruction, validation plots, and PID LUT (code frozen in May/June?)
 - TOF digitization Souvik/Adam: charge sharing and detector noise (model on standalone, help on digitizer needed)
 - TOF service in simulation TBD: implement the missing material for mechanical support structure, cooling and cabling
- ePIC TOF DSC
 - Working with CAMs to understand/update the TOF cost and schedule in-kind contributions and FTOF labor spreadsheet
 - **Reform TOF DSC ORG with new leadership team and <u>working group structures (p5)</u>**
- Upcoming Reviews
 - Incremental Design and Safety Review on July 5-6, 2023: <u>Presentations</u>; <u>Review report</u>; answers in preparation (p3/4)
 - PDR2 in Summer 2024?; CD2/3 in Winter 2024?
 - pre-TDR/TDR planning (p6/7): see Silvia's slides at TIC on Feb 19, PID discussion on Feb 23, and presentation at TIC on March 4

New time slot

- Three time slots:
 Wednesday 10AM 13
 Friday 10:30AM 10
 Friday 11AM 10
- Wednesday collides with ORNL group meeting Friday, most of Asian colleague not available

AC-LGAD FY24 R&D Proposal

- Optimized sensor design and final prototypes that meet ePIC requirements, including timing and spatial resolution, irradiation tolerance, and reasonably large size for module assembly
- Prototypes of interposer for mechanical/electrical connections between strip sensor and ASIC
- Prototypes of light-weight module mechanical structures for forward TOF
- Prototypes of frontend ASICs
- Functional and full size low-mass Kapton PCB
- Low-cost interconnect for sensor-ASIC hybridization
- Service hybrid prototype

 eRD112 (414k->286k\$) Sensor R&D (346k->261k\$) BNL, HPK/FBK-productions TCAD, lab/beam/irradiation tests Sensor/ASIC integration (15k\$) Interposer Mechanical structure (\$53k) Light-weight structure w. cooling 	 eRD109 (435k->390k\$) Frontend ASICs EICROC (85k\$) FCFD (40k\$) 3rd Party ASICs (45k\$) Frontend electronics Low-mass Kapton PCB (30k\$) Low-cost hybridization (15k) Service hybrid (220k) (redistrib?) 	 EPIC Simulation Geometry model, digitization and reconstruction Requirements on spatial, timing resolutions, and material budget Project Engineering Design Engineering design for pre-TDR Integration & services
	• Service hybrid (220k) (redistrib?)	Integration & services

Sensor Electronics Sensor-ASIC integration Mechanics

Zhenyu for eRD112

The Request

Dear DSLs,

Following what has already been communicated at the ePIC collaboration meeting (Jan 9-13, 2024), the DSLs are requested to prepare a TDR plan for their subsystem for calendar year 2024, including:

- The lab/testbeam/prototyping needed;
- The further progress needed for the reconstruction software;

• The verification of the implementation of the detector and detector response in simulation and validation using information from lab/testbeam exercises or from literature;

- The studies required to demonstrate the detector performance;
- The required engineering design;
- The needed resources to achieve 60% (CD-2) and 90% (CD-3) design completion;
- The plan should include the time required to draft the text for the pre-TDR (CD-2) and TDR (CD-3).

The plan should present the activities required month by month in order to allow progress to be monitored. The ultimate goal of this exercise should be 90% design completion consistent with the requirements of the TDR and CD-3, indicatively by the end of 2024. We recognize that the available time is limited. Therefore, please make an educated selection of the most essential studies doable within the available time.

We understand that a planning exercise like this will identify shortcoming in workforce and resources. Those shortcomings should be clearly identified so everyone is aware and we can work together to address them.

The plans will be presented at dedicated CC WG meetings, to be organized by the CC WG conveners over the next few weeks. The CC WG conveners will be asked to report on the status of the planning at the TIC meeting on Monday Feb. 19.

Thank you,

Silvia, John, Oskar, Matt, Prakha

component	Current status	R&D	PED	Beam Test	60%	90%
Sensors	prototyping: 1 st HPK prototype tested; 2nd HPK production in prep.; 1 st FBK prototype in prep.	eRD112 FY22 eRD112 FY23 eRD112 FY24-26		2022, 2023, 2024	FY25 Q2 (2 nd HPK)	FY26 (3 rd HPK)
ASIC	Prototyping: FCFDv0 and FCFDv1 for BTOF, EICROC0 for FTOF	eRD109 FY23 eRD109 FY24-26		2024	FY25 Q2 (FCFDv1,EICROC1)	FY26 (FCFDv3, EICROC2)
Module Flex PCB	Prototyping: long PCB	eRD109 FY23 eRD109 FY24	2026	2025-	FY24 Q4 (M2M, M2SH)	FY26 (full-length integration)
Module CF structure	Prototyping: BTOF stave produced, thermal simulation underway	eRD112 FY23			FY25 Q2 (full-length stave)	FY26
Module Assembly	Prototyping: Sensor/ASIC integration, Interposer	eRD109 FY24 eRD112 FY24	In prep.	2025-	Thermo-mechanic prototype FY24	Fully functional module FY26
Global support structure, Cooling	Conceptual design		Active		FY25 Q2 (1/12 with staves)	FY26 Q1 (1/12 FTOF wedge)
Service Hybrid	Prototyping: board layout	eRD109 FY24		2025-	FY25 Q1 (with ETROC2)	FY26 (final layout & ASIC)
Backendelectronics, Power supplies	Possible PS models identified	N/A	N/A		Design in FY24 (with project)	Purchase/test one in FY25
Software and simulations	Geometry and material in DD4HEP, have TOF PID, tracking $\delta \textbf{p}$	N/A	N/A	N/A	PID LUT in global framework in FY24	Refined material and responses in FY26

Critical Paths and additional Resource requirements

- FCFD ASIC development and testing for BTOF (FNAL+LBL PED)
- BTOF module assembly (UCSC+Purdue PED) proposal in progress
- FTOF module assembly (ORNL PED?)
- BTOF+ FTOF Service Hybrid Engineering+parts (Rice/LBL PED)
- Long Flexible Print Circuit Board for BTOF staves (ORNL+Nara+RIKEN) eRD109 (beyond FY24?); discuss with Oskar
- Software+simulation:

detector response + realistic material (additional institutions?)

Strategy for the TDR (ASIC)

- BTOF digital block demonstration is in need (a concern)
 - It is important to show that "we can't show it now, but we will definitely be able to do Ο it shortly
 - It is necessary to fully understand and demonstrate the individual characteristics in pre-Ο TDR
 - Characteristics of sensor, FCFD's analog block, and the combined performance
 - Ο
- The FTOF study will help to corroborate the story
 Successful signal readout of FTOF means "complete understanding of the AC-LAGD → analog → digital chain"
 - This knowledge shows that we have the technology to extend analog blocks to digital blocks while keeping a good timing resolution
 - Investigating the availability of other ASICs (e.g. HGCROC) is also important Ο

The beam test at DESY is scheduled for June

- It is a good opportunity to show performance of the sensors and ASICs with realistic Ο environment
- Real MIP beam is mandatory to evaluate realistic performance Ο
- Before the beam test, the lab tests, e.g. radiation source and IR laser, is necessary Gain uniformity, temperature dependence of gain, timing resolution, spatial resolution, and Ο
 - power consumption

New items discussed (any updates?)

- Irradiation test
 - Limited strips, pixels more
 - Dose should be as low as possible $<10^{14}$
 - European groups in the project

- BTOF, FTOF ASIC designs
 - Digitizer requirements for BTOF iteration with FNAL designer
 - Tonko will produce a similar requirement for FTOF

New TOF DSC ORG

- Leadership Structure
- Work packages combining BTOF and FTOF
 - 1. Sensors (2 coordinators) Simone Mazza, Japanese colleague

Position	Candidate(s)
1 Detector Subsystem Leader	Zhangbu Xu
1 Deputy DSL	Satoshi Yano
2 Detector Subsystem Tech. Coordinators	Mathieu Benoit, Matthew Gignac

- 2. Frontend Electronics (all electronics that are on the detector) (2 coordinators) Wei Li, TBD
- 3. Module local integration and assembly (2 coordinators) Mathieu/Matthew, Asian colleague
- 4. System tests and validation (2 coordinators) Prithwish Tribedy (FF Liaison)+Takashi Hachiya
- 5. Mechanical structure, cooling and global integration (2 coordinator) Andy Jung, Yi Yang
- 6. DAQ & Clock distribution (1 coordinator) Tonko Ljubicic
- 7. Power system, Detector slow control, monitor and safety system (1 coordinator) Frank Geurts
- 8. Simulations, software & calibration, Database(1 coordinator) TBC?

R&D efforts and contributions from 10/2023

Institution	Contact	R&D Interest
Brookhaven National Laboratory	Alessandro/Zhangbu	Sensor prototyping, ASIC testing, Electronics development
Fermi National Accelerator Laboratory	Artur Apresyan	Sensor testing, ASIC prototyping
Los Alamos National Laboratory	Xuan Li	Sensor testing, simulation
Rice University	Wei Li	Sensor testing, Electronics development
Oak Ridge National Laboratory	Oskar Hartbrich	Sensor testing, ASIC testing, Electronics development, Simulation
Ohio State University	Daniel Brandenburg	Electronics testing, Simulation
Purdue University	Andreas Jung	Mechanical structure and cooling system prototyping
University of California, Santa Cruz	Matthew Gignac	Sensor testing, ASIC testing
University of Illinois at Chicago	Zhenyu Ye	Sensor testing, sensor-ASIC integration, ASIC testing, Simulation
Hiroshima University	Kenta Shigaki	Sensor prototyping and testing, Simulation
RIKEN	Yuji Goto	
Shinshu University	Kentaro Kawaide	
University of Tokyo	Taku Gunji	Online data reconstruction
South China Normal University	Shuai Yang	Simulation
Univ of Science and Technology of China	Yanwen Liu	Sensor prototyping, Electronics development, Simulation
Indian Institute of Technology, Mandi	Prabhakar Palni	Sensor testing, Simulation
National Inst. of Sci. Education Research	Ganesh Tambave	Sensor prototyping and testing
National Cheng-Kung University	Yi Yang	Mechanical structure prototyping
National Taiwan University	Rong-Shyang Lu	Sensor prototyping, ASIC testing, Electronics testing

Possible institution efforts and contributions from 10/2023

Institution	Working Group and Tasks
Brookhaven National Laboratory	BTOF: sensor, sensor-ASIC integration, module assembly; CS: backend electronics; DP: simulation and reco.
Fermi National Accelerator	
Los Alamos National Laboratory	FTOF: sensor, module assembly; CS: cooling system and support structure; DP: simulation and reco.
Rice University	BTOF/FTOF: Front-end electronics; CS: backend electronics; DP: simulation and reconstruction
Oak Ridge National Laboratory	BTOF/FTOF: sensor, sensor-ASIC integration, frontend electronics, module assembly
Ohio State University	BTOF/FTOF: module assembly; CS: backend electronics, alignment; DP: simulation and reco.
Purdue University	BTOF/FTOF: module structure; CS: cooling system and support structure
Univ. of California, Santa Cruz	BTOF: sensor, sensor-ASIC integration, module assembly
University of Illinois at Chicago	BTOF/FTOF: sensor, sensor-ASIC integration, module assembly; DP: simulation and reconstruction
Hiroshima University	BTOF/FTOF: sensor, module assembly; DP: simulation and reconstruction
RIKEN	BTOF/FTOF: module assembly
Shinshu University	BTOF/FTOF: sensor
University of Tokyo	CS: streaming readout; DP: online reconstruction
South China Normal University	
Univ of Sci. and Tech. of China	
Indian Institute of Tech., Mandi	DP: simulation and reconstruction
National Inst. of Sci. Edu. Res.	
National Central University	DP: simulation
National Cheng-Kung University	BTOF/FTOF: module structure; CS: cooling system and support structure
National Taiwan University	BTOF: sensor-ASIC integration, frontend electronics, module assembly
Univ. Técnica Federico Santa María	FTOF: module assembly; DP: simulation and reconstruction

Estimate of in-kind contributions (both domestic and international)

- Based on the previous table and new efforts,
- Estimate of in-kind contributions
- DSL will contact each group representative on this
- Please help us on this iteration with CAM

Simulation Work Package and task list