Some initial thoughts on calibration for FF detectors

Alex Jentsch

3/12/2024

Roman pots and off-momentum detectors

- How do we use the Roman pots?
- Momentum reconstruction requires transfer matrices to describe particle motion through the magnets.

- Transforms coordinates at detectors • (position, angle) to original IP
- Matrix unique for different positions along the beam-axis!

 (x_{28m}, y_{28m})

Roman pots and off-momentum detectors

Alignment concepts:

- Relative alignment of sensors with respect to one another.
- Absolute alignment of sensor packages with respect to beam.

≻Survey alignment

- Doesn't require interaction with DAQ.
- Provides \sim mm precision, at best \rightarrow not good enough alone for our needs.

Beam-based alignment

• Beam-based alignment requires use of information from the machine beam position monitors, in combination with detector hit information.

AC-LGAD

- Requires BPMs before and after Roman pots.
- Goal is to understand the position of the beam with respect to the detectors.
- Also important to understand alignment of sensors in same station.
- Different optical configurations can be requested for calibration runs, as well.

➤<u>Use of hit information</u>

- Comparing rates in various parts of the detector → beam is Gaussian in x and y, rates in bottom/top and right/left should be the same if the detector is perfectly centered on the beam.
- Useful way for achieving relative alignment as rates are compared in sensors between in different layers.

- Conventional tracker in a magnetic field, normal challenges apply.
- Need to consider absolute alignment of planes and relative alignment with respect to one another.
- Can use cosmics for calibration, as well.
- High rates expected in detector during normal operation (DIS + beam+gas) could low lumi running be useful for calibration purposes?

B0 EMCAL and ZDC EMCAL

- Both using crystals (PbWO4 or LYSO) + SiPM readout (APDs also being considered).
 - Cosmic rays can be used for calibration (we usually have cosmic running periods before we get beam at RHIC), and to calibrate SiPM gains.
 - LED systems can be employed, as well (but has not been discussed).
 - Standard calibration tools with "real" particles \rightarrow MIPs and gamma/electrons.
 - B0 calibration will benefit from track information in the case of electrons, but no details ready on this, as of yet.

ZDC HCAL

- Same technology as HCAL insert in forward endcap.
 - Data needed for SiPM gain calibration, LED system for calibration, etc.
- Biggest difference here is the dynamic range → neutrons can have ~ beam energy in ZDC.

Some general notes

- Every ePIC subsystem will need cosmics → expectation for ~ 1 week of cosmic data taking before the run starts seems reasonable.
 - Requires full DAQ operation.
- LED systems will be needed for most calorimetry.
 - Not clear SRO DAQ is needed here, but perhaps some common approaches can be employed.
- Need to be able to use information from the accelerator in real-time.
 - BPM information for RP/OMD alignment.
 - Accelerator clock information.
- AC-LGAD based detectors will have similar needs (same ASIC, same sensor).
 - ASIC will have obvious needs for measurement of pedestal and noise and calibration of threshold and gains.
 - Radiation damage will accrue over time and affect both the timing resolution, and spatial resolution (for detectors using charge sharing, e.g. B0) → not expected for a significant running time, but needs to be monitored.
- Time synchronization of FF/FB with central detector? Scheme needs to be discussed.
 - Time of the hit @ FF detector needed to associate hit to bunch crossing.
 - Takes about 10 bunch crossings (30 meters/speed of light 10ns bunch spacing) worth of time to go
 from IP to Roman pots.