

ePIC SVT BNL efforts

- now and in the future

March 14, 2024 <u>Contribution:</u> G.W. Deptuch, S. Mandal, D. Górni, J. de Melo, A. Iqbal, P. Purohit, S. Rescia, P. Maj, S. Hassan

Aokha ab

ePIC SVT efforts -1

• Baseline (resulting from LDRD22-078, eRD113 R&D and PED)

Sensors (ITS3 and EIC-LAS):

- design of data transmission links from Repeated Sensor Unit (RSU) to LeftEndCap for congregation on HighSpeed,
- on-MAPS data sparsification and congregation for reduction of HighSpeed links (ITS3 database needed),
- additional functionalities such as VitalFunctionsMonitoring_ADC, hopefully to be included in ER2.

Ancillary ASIC (AncASIC):

- Implications of adoption of serial powering on ePIC-SVT (some early ideas may not be greatest):
 - negative voltage generation (NVG) for biasing of charge collection volume of MAPS,
 - Slow control and operational command distribution to EIC-LAS,
 - conceptualization of shunt-regulator-based power supply for improved ratio P_{MAPS}/P_{AncASIC}.

Testing and assembly:

• Test, assembly, and calibration laboratory for the ePIC components arriving at BNL before installation in the EIC.

ePIC SVT efforts -2

• Upgrades (based on EIC gen. R&D, LDRD24-054)

- Repeated Sensor Unit (RSU) with Event-Driven, binary (no priority encoding) readout and LowPower (LP) Front-End for O(100 ns) timing resolution;
- Power-over-Fiber (PoF) for simplified, direct and low material load supply (power delivered by light and converted to electrical with PV cells);
- Integrated photonics for, small number of components (no laser in fiducial volume) and ultra-large bandwidth data transmission with WavelengthDivisionModulation (WDM);
- Self-supporting, larger-radius (OB) layers with pre-bent, large-area MAPS sensors for X₀ reduction.

Glance of ePIC SVT -1

- cables & services for µvertex & OuterBarrel layers
 + first 2 disks exite on a cone along 45° line and cables run in-front of MM
- 3 equal sized MM modules
- MM cables can run on front or back face of MM
- fewer sharp bends

G. Feofilov et al., ITS3 WP4 10 October 2023. Brookhaven⁻ National Laboratory

MPGD Barrels + Disks
 AC-LGAD based ToF

ePIC SVT detector layout configuration (in total almost 100B pixels, on \sim 10 m² of Si)

Silicon Barrel Layers									
		Radius [mm] (min, max)		Length [mm]	X/X0 [%]				
VX 1 (L0)		36		270	0.05				
VX2 (L:	l) IB	48		270	0.05				
VX3 (L2)		120		270	0.05				
Sagitta1 (L3)		270		540	0.25				
Sagitta2 (L4)		420	840		0.55				
Silicon Hadron Endcap (wheels)									
		Distance [cm]	Radius [[mm] (min, max)	X/X0 [%]				
HD1	1	25	(36.76, 230)		0.24				
HD2	H-End	45	(36.76, 430)		0.24				
HD3	Сар	70	(38.42, 430)		0.24				
HD4	Disks	100	(5	(54.43, 430)					
HD5	DISKS	135	(7	0.14, 430)	0.24				
Silicon Electron Endcap (wheels)									
ED1	E-End	-25	(36.76, 230)		0.24				
ED2		-45	(3	6.76, 430)	0.24				
ED3	Cap	-65	(3	6.76, 430)	0.24				
ED4	DISKS	-90	(40.0614, 430)		0.24				
ED5		-115	(46	.3529, 430)	0.24				

Technology of choice: MAPS in TPSCo 65 nm process, following CERN's Disclaimer: ALICE ITS3 upgrade development of bent silicon some numbers, mainly X/X0, are evolving due to stave approach and cooling.

Glance of ePIC SVT

by Georg Viehhauser

MOSAIX

12-Reticle-long MAPS stitched sensors in TPSCo 65 nm process

Transmission Links from RSUs -1

Stitched Backbone

Transmission Links from RSUs -2

By Joao de Melo

Transmission Links from RSUs -3

Ancillary ASIC

3 functions:

- Power supply delivery to MAPS sensors
- Biasing (negatively) of charge collecting volume of MAPS sensors

Negative Voltage

Oscillator

DAC

BGR

Dispatcher

& Clock

PSUB

SLDO

Chip

Select

Common

Config

Charge

Pump

Register

Ancillary ASIC – Power Management

• MAPS sensors (EIC LAS) will be organized in stave layouts in OB

National Laboratory

Ancillary ASIC on FPC

Ancillary ASIC – Power Management

Is reduction of SLDO power consumption possible? Idea: use single shunt LDO for each MAPS sensor (EIC-LAS) and set of series LDOs to generate required supply voltages; current design features multiple Shunt - LDOs to • Dropout voltage of each series LDO can be designed to be small generate supply voltages for each EIC-LAS; (< 100 mV), thus improving power efficiency. · series resistor in each shunt consumes a significant SLDO concept borrowed from I_{in} amount of power; ATLAS pixels; there SLDOs are V_{DDi} distributed in parallel I_{in} R3 V_{DDi} limits EIC-LAS current R_s R_{\bullet} R_{\bullet} EIC-LAS k : 1 M1 لم per $-V_{DD2}$ $-V_{DDN}$ Vref DD1LDO LDO LDO M2 shunt V_{DD1} V_{DD2} V_{DD3} R3 Vout Vin Ф- V_{DDi} V_{DDi} M3 R1 ≷ $I_{shunt} = kI_{ref} - I_L$ R_s R_{*} R_s EIC-LAS **EIC-LAS** 0 V_{DDN} V_{DD1} $-V_{DD2}$ R2∏ A3 M4 LDO LDO LDO M6 Φ out V_{DD1} V_{DD2} V_{DD3} **Current estimate:** P_{MAPS}/P_{AncASIC}≈2 V_{DDi} This means that 50% of power is $\lesssim R_s$ V_{DDi} R_s R_s EIC-LAS wasted not accounting for I R in $-V_{DD2}$ V_{DDN} DD1 R_{s} cables **EIC-LAS** therefore LDO LDO LDO +10% shunt overhead based on Brookhaven V_{DD1} V_{DD2} V_{DD3} https://cds.cern.ch/record/22926 I_{in} National Laboratory 28/files/CR2017 385.pdf

Ancillary ASIC – slow control

 There is justified reason why industrially standardized slow control interfaces are DC-coupled

Interfaces:

- mother of all interfaces: RS-232 is DC-coupled although it uses voltage levels that would give modern people a headache!
- CANBUS (it works in very harsh environment), I²C, JTAG all, even Centronics are DC-coupled standards;
- RS-485/422 is current-mode interface, and familiarity with it may make considerations simpler.

AC-coupled interface always requires to know how to start and makes more difficult regaining transmission after it is stopped or interrupted;
Slow-control interfaces may remain muted for most of the operation time (why to burn unnecessary power?);
Decision on ACADE - coupling is neither domain of ASIC nor power and electrical interfaces: it is fully cross domain

wrong choices in power/grounding shielding and slow control may kill entire detector

Slow control, Block Diagram (AC Coupling)

Slow Control, How about DC Coupling? Better choice!

- Ancillary ASIC seats between IpGBT and EIC LAS on OB staves and disks
- Serial Powering makes each EIC LAS seat on local ground (gnd1, gnd2, gnd3 ...)
- Communication to and from IpGBT must take into account gnd1...4 potential differences into account
- Natural seems to use AC-coupling, but DC-coupling offers advantages for

proposal of slow control data framing, including AncASIC intermediate features

- SOF: Start of Frame
- Anc_Address: Address of Ancillary Chip
- **Data_Type:** Read/Write
- Data: To MOSAIX / EIC-LAS
- FCS: Frame Checksum Field
- EOF: End of Frame

MOSAIX/EIC-LAS SC interface:

- controls power, configuration and monitoring;
- is serial, half-duplex bidirectional;
- differential, with independent signal pair up and down stream;
- DC-balanced data, Manchester enc.
- line rate 5-10Mbps;
- immune to errors and wrong transmissions

Current work focused on writing down protocol, specification and define development timelines:

- matching of clock speeds of eLinks and MOSAIX/EIC-LAS interface requires buffering of data inside AncASIC;
- data sent from IpGBT must be formatted to contain:
- addresses of AncASIC (eFuse-burned), and
- addresses / data following MOSAIX/EIC-LAS data structure (address-data);
- internal configuration of AncASIC built consistently with MOSAIX (for uniformity of data exchange protocol);
- data integrity methodology (checksums, correction, triplication, read back) tbd.;
- addition of built in fast commands (reset, synchronize MOSAIX readout, status readout, etc.);
- MOSAIX debate: 320 / 160 MHz system clock should it be slow control transmission clock or 4th line is needed for system clock? Information on MOSAIX interface available from ITS3-WP6;

mitigation of soft errors:

SET in combinational logic

SEU in memory cells / flip-flops

DOLOUT

fsm02

Transient & Static

comb

logic

Simple FSM

Inl

clk

Triplicated FSM 21

Negative Voltage Generator / Regulator

NegVReg creates negative bias for charge collecting volume from positive regulated power supply 1.2 V

- settable range \in (~0 V, -6 V) and current drive up to 1 mA;
- ⇒ diode-based charge-pump circuit
- Two main topologies: Cockcroft-Walton and Dickson (hybrids are also possible).
- Cockcroft-Walton: RF signal is fed in series.
 - The DC voltage across each capacitor is limited to $\sim V_{RF}$, so very high output voltages are possible.
 - The output impedance increases rapidly with number of stages since all the capacitors are in series.
- Dickson: RF signal is fed in parallel
 - The DC voltage across each capacitor equals V_{OUT} , limiting the maximum output voltage.
 - The output impedance increases less rapidly since the capacitors are in parallel.
- The current design requires a modest output voltage, so the Dickson topology is preferred.

Negative Voltage Generator / Regulator

Circuit Design progressed to demonstration of feasibility

use enclosed layout transistors (ELTs) if needed

to improve radiation hardness;

Brookhaven

Closed-loop simulations V_{REF}=1.2 V

- $V_{OUT} = -V_{REF}/\alpha = -3 \times V_{REF} = -3.6V.$
- $C_L = 10 \text{ pF}$ (small value w.r.t. real to reduce $T_{\text{simulation}}$). ²³

Specifications and design

ePIC SVT - Specification for EIC-LAS and Ancillary Chip

- component functional blocks are being identified;
- full specification of AncASIC is underway;
- targeted project completion by end of CY2024;
- testing with MOSAIX sensors in ER2 in future;

March 14, 2024

1 Introduction

This document contains specifications for the chips needed for construction of the ePIC SVT - the EIC-LAS and the ancillary chip.

2 Negative Bias Generator

This block provides a negative voltage to back-bias the EIC-LAS. This is necessary because the level of the back-bias voltage is sufficiently low, and required to be sufficiently precise, that it is needed to generate the negative voltage relative to the local ground in the serial powering chain.

2.1 Specifications

Negative Bias Generator Specification								
Specification	Unit	Value	Comment	Status				
Voltage Range	V	0 to −6	Relative to lo-					
			cal ground					
Current Capac-	A	10^{-3}						
ity								
Voltage Ripple	mV	< 0.1						
Power	W	$< 10^{-2}$						
Supply Voltage	V	1.8						
Area	μm^2	4×10^{5}						

2.2 Outstanding Questions

1. Level of radiation hardness required?

VFM_ADC

Small footprint ADC for collecting information on health of MAPS sensors:

VFM_ADC, self clocked, <5,000 μ m²,10 b ADC

Testing and Assembly

Organize equipped laboratory space

Testing and Assembly

Test, assembly & calibration laboratory for ePIC components arriving at BNL before installation

deeded space in IO 535B basement

- space for each ePIC SVT participating institution;
- 2 large optical tables;
- ESD proof test benches and storage cabinets;
- 12-inch probe station with temperature control;
- environment controlled chamber;
- coordinate metrology and calibration;
- semiconductor characterization instruments;
- data acquisition resources;
- services: vacuum, dry air compressed air, nitrogen;
- high-density interconnect, plasma cleaning, rework;

Ancillary ASIC

3 functions:

- Power supply delivery to MAPS sensors
- Biasing (negatively) of charge collecting volume of MAPS sensors

Negative Voltage

Oscillator

DAC

BGR

Dispatcher

& Clock

PSUB

SLDO

Chip

Select

Common

Config

Charge

Pump

Register

Upgrades R&D -1

Upgrades R&D -2

Entirely galvanically isolated detector (generic R&D)

- **Power** ⇒ by light on fiber and PV cells;
- Slow Control and Reference Clock ⇒ delivered on fiber
- High-Speed data < on fiber, wavelength multiplexed, EOM = Photonic IC (PIC)

Summary

- Multiple activities:
 - emphasis is placed on the baseline ePIC SVT;
 - R&D visible being shifted to PED (specifications under constructions);
 - R&D for the upgrades is ongoing both on sensors and services/readout infrastructure

