Jet Workshop Summary

Anthony Hodges
On Behalf of the Jet Workshop
RHIC/AGS Users' Meeting
June 13th, 2024

NSF Ascend Fellow

The Workshop at a Glance

- Two overview talks from theory and experimental perspective
- Talks focused on variety of physics topics
- All centered, of course, on jets!

Setting the Stage, What Are Jets?

 Textbook definition: "jets are collimated, high-energy spray of hadrons resultant from the fragmentation of a hard-scattered parton"

Setting the Stage, What Are Jets?

 Textbook definition: "jets are collimated, high-energy spray of hadrons resultant from the fragmentation of a hard-scattered parton"

• In theory:

Theory Overview: Yacine Mehtar-Tani

Setting the Stage, What Are Jets?

- Textbook definition: "jets are collimated, high-energy spray of hadrons resultant from the fragmentation of a hard-scattered parton"
- In experiment:

Grouped together using jet clustering algorithms to form experimental jets with a p_T and resolution parameter R

Why Do We Study Jets?

- Jets serve as proxies for the partons that created them, which we are interested in studying
- For theorists: Jets are perturbatively calculable objects
- For experimentalists: jets use high-resolution detector response regimes

experimental jets with a p_T and resolution parameter R

Why Do We Study Jets?

Jets are a critical probe of the QCD phase space!

Why Do We Study Jets... In Heavy-Ion Collisions?

- Jet-Medium interactions important probe of Quark-Gluon Plasma formed in heavy-ion collisions
- Large underlying event offers challenges our understanding of particle correlations (positive spin!)
- Elucidate important QCD question, e.g. quark vs. gluon QCD interactions, mass dependence...

More complex structure -> more opportunities for interactions

Quark jets narrower than gluon jets

Experimental Overview: Laura Havener

Why Do We Study Jets...

At the LHC

vs. At RHIC?

Large Hadron Collider (LHC) at CERN

Relativistic Heavy Ion Collider (RHIC) at BNL

RHIC and LHC Synergies: Virginia Bailey

Different Jet Populations

- Jets at RHIC offer a more quark-rich sample
- Jets at LHC offer interesting physics opportunities to study inclusive vs. quark-rich samples
- Additionally, jets at RHIC exist closer to the medium scale

RHIC and LHC Synergies: Virginia Bailey

Temperature [MeV]

The Power Of Multiple Machines...

- Generally one wants multiple experiments (2-3)
 - To serve as cross-checks on collider results
 - Also to complement varying strengths
- Cross-checks across *colliders* now possible as well, thanks to LHC-detector sPHENIX's development at RHIC

What Do Jets See in Heavy-Ion Collisions?

- How finely can jets resolve the medium?
- Strong, system-independent, centrality dependent R_{AA} hints that jets can resolve differential path-lengths

$$R_{AA} = \frac{1}{N^{AA}} \frac{d^2 N^{AA} / d\eta dp_T}{T_{AA} d^2 \sigma^{NN} / d\eta dp_T}$$

$$T_{AA} = \langle N_{coll} \rangle / \sigma_{inel}^{NN}$$

Path-length-dependent Energy Loss: Megan Connors

Anthony Hodges, NSF Ascend Fellow, UIUC

Clear Path-Length Dependence

- Not only non-zero v_2 for high p_T jets, but non-zero v_3 measured at LHC!
- Jets are sensitive not only to differences in pathlength, but fluctuations of the pathlength as well

Path-length-dependent Energy Loss: Megan Connors

How Finely Can We Resolve Jets?

- Jet grooming can be used to study the hard splittings within jets
- Gives experimental access to the hadronization/fragmentat ion process

Jet Substructure: Dhanush Hangal

How Finely Can the *Medium* Resolve Jets?

- ATLAS result hints that at high p_T , medium modification is more sensitive to coherence effects
- Large $r_g \rightarrow$ medium sees two colored objects \rightarrow more energy loss

• Small $r_g \rightarrow$ medium sees *one* colored object \rightarrow less energy loss

Jet Substructure: Dhanush Hangal

Energy-Energy Correlators!

- Energy N-point Correlators becoming increasingly popular
- Possible to delineate regions of perturbative and non-perturbative physics related to free-hadrons and partons, respecitvely

Looking Towards the Future: Jets at the EIC

 Aim of Electron-Ion collider is to probe the spin structure of nuclear matter with unprecedented precision

Jets still an important part of the EIC physics mission!

Arratia, Jacak, FR, Song `19 see also Aschenauer et al.

Jets At the EIC: Felix Ringer Scattered electron

Looking Towards the Future: Jets at the EIC

- Aim of Electron-Ion collider is to probe the spin structure of nuclear matter with unprecedented precision
 - Electron-jet imbalance at the EIC

$$\vec{q}_T = \vec{p}_T^e + \vec{p}_T^{
m jet}$$

- Sensitivity to TMD PDFs but no TMD FF
- TMD factorization

$$F_{UU} = \sigma_0 H_q(Q, \mu) \sum_q e_q^2 J_q(p_T^{\text{jet}} R, \mu)$$

$$\times \int \frac{\mathrm{d}^2 \vec{b}_T}{(2\pi)^2} e^{i\vec{q}_T \cdot \vec{b}_T} f_q^{\text{TMD}}(x, \vec{b}_T, \mu) S_q(\vec{b}_T, y_{\text{jet}}, R, \mu)$$

Sensitivity to the Sivers function

Jets At the EIC: Felix Ringer

A Framework For Theory and Experiment

 JET/XSCAPE modular framework allows for the simultaneous usage of many theory models and event generators

XSCAPE in Asymmetric Systems

- A theory/experiment framework for xA systems
- Shows good agreement with LHC data already
- Improves ease of model discrimination with unified framework

Some Concluding Remarks

- Jets a multifaceted way to make precision measurements of QCD phenomenon
- The field is rapidly approaching a transition from the familiar "Golden Age" of Heavy-Ion physics to the new frontier of EIC physics
- Proper accounting of what we've learned in the past 20 years of RHIC and LHC jet physics is a necessity
- The successful conclusion of the sPHENIX, STAR, and RHIC science missions are a necessity
- The development of models that can simultaneously describe multiple aspects of jet physics are necessary more than ever to begin approaching a more unified understanding of hot and cold QCD physics

