Heavy Flavor Workshop Report

Anthony Frawley 2024 RHIC/AGS Annual User's Meeting June 11-14, 2024

Heavy Flavor Workshop June 12, 2024

There were 9 presentations on open heavy flavor and heavy quarkonia.

- Open Heavy Flavor Physics STAR, Ondrej Lomicky
- Open Heavy Flavor physics PHENIX, Daniel Richford
- Open Heavy Flavor Physics sPHENIX, Thomas Marshall
- Open Heavy Flavor Physics (LHC) Preeti Dhankher
- Heavy Flavor Jets sPHENIX, Jakub Kvapil
- HF Quarkonium Physics STAR, Wei Zhang
- HF Quarkonium Physics PHENIX, Ming Liu
- HF Quarkonium Physics sPHENIX, Marzia Rosati
- HF Quarkonium Physics (LHC) Minjung Kim

Introduction

A comprehensive summary of the large number of interesting results presented in the workshop is impossible here.

I will present selected highlights only - organized by topic.

Please see the original talk slides for details, and for proper referencing of sources.

https://indico.bnl.gov/event/22687/

Open Heavy Flavor

Can be studied by measuring yields of:

- HF decay leptons
- Reconstructed hadronic decays of HF mesons
- Heavy flavor tagged jets

Good progress on all three fronts.

HF electrons at RHIC - b/c separation

Ondrej Lomicky

Separation of charm and bottom energy loss clear. STAR & PHENIX agreement within uncertainties.

Daniel Richford

HF electrons at LHC - b/c separation

Preeti Dhankher

Dead cone effect: gluon radiation suppressed at angles smaller than $\theta < m/E$

Consistent with mass dependent hierarchy!!!

Cent. 0-10%

 $p_{\rm T}({\rm GeV}/c)$

Probe modified by the medium!!

$$R_{\rm AA} = \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{< T_{\rm AA} > \mathrm{d}\sigma_{pp}/\mathrm{d}p_{\rm T}}$$

"Flow bump" due to (radial) flow of medium and coupling at small p_{T}

PbPb 5.02 TeV

0.4

0.2

HF electron v₂ at RHIC

Daniel Richford

Ondrej Lomicky

Good agreement between PHENIX and STAR. Similar v₂ at mid and forward rapidity in PHENIX.

Open HF hadrons

Ondrej Lomicky

 D^0 R_AA in isobar collisions @ 200 GeV

PRELIMINARY

Adding data from Zr+Zr and Ru+Ru collisions

- No obvious centrality dependence for the low p_T suppression
 - → Interplay of radial flow, the cold nuclear matter effects, and the charm hadrochemistry
- Suppression in central collisions at $p_{\rm T}>3~{\rm GeV/c}$
 - ⇒ Significant energy loss of c quarks in the bulk QCD medium
 - \Rightarrow Centrality dependence of the high p_T suppression
- Good description by a Langevin model from 3 GeV/c
- Similar suppression in isobar and ${\rm Au+Au}$ collisions despite different $\langle N_{\rm part} \rangle$ at a given energy

STAR: Phys. Rev. C 99, 034908 (2019)

Constraining nPDFs

LHCb Do data places very stringent bounds on the gluon nPDF.

Important step in constraining models of HF modification in nuclear targets!

To come: open HF in sPHENIX

1.6 | SPHENIX BUP 2022, 0-10% Au+Au, Years 1-3 | 6.2 pb⁻¹ str. p+p, 21 nb⁻¹ rec. Au+Au | SPHENIX BUP 2022, 0-10% Au+Au, Years 1-3 | 6.2 pb⁻¹ str. p+p, 21 nb⁻¹ rec. Au+Au | SPHENIX BUP 2022, Years 1-3 | 6.2 pb⁻¹ str. p+p, 21 nb⁻¹ rec. Au+Au

RHIC/AGS Annual User's Meeting 2024

Jets

D0 jet fragmentation - STAR

Ondrej Lomicky

D⁰-jet fragmentation function in Au+Au @ 200 GeV

$$z_{\mathsf{Jet}} = rac{ec{p}_{\mathsf{T},\mathsf{Jet}} \cdot ec{p}_{\mathsf{T},\mathsf{D}^0}}{|ec{p}_{\mathsf{T},\mathsf{Jet}}|^2}$$

- ullet z_{Jet} related to fragmentation function in DGLAP equation
- Hard fragmented D⁰-jet yield suppressed in central/midcentral events
- Soft fragmented D⁰-jet yield ratio consistent with 1 in central/midcentral events
- LIDO agrees well with yield in peripheral events, slightly underpredicts yield in central events

LIDO, Phys. Rev. C 98, 064901

PRELIMINARY

Ondřej Lomický (STAR)

D⁰ jets - ALICE

Do tagged jets compared with inclusive jets.

Preeti Dhankher

Shows clearly the flavor dependence of jet energy loss.

First direct observation of dead-cone effect

SHERPA - - SHERPA LQ/inclusive no dead-cone limit

ratio of the splitting angle (heta) distribution for D^0 -tagged vs. inclusive jets, vs. $E_{
m Radiator}$

$$R(\theta) = \frac{1}{N^{\text{D0jets}}} \frac{dn^{\text{D0jets}}}{d\ln(1/\theta)} / \frac{1}{N^{\text{inclusive jets}}} \frac{dn^{\text{inclusive jets}}}{d\ln(1/\theta)} \Big|_{k_{\text{T}}, E_{\text{Radiator}}}$$

significant suppression of small-angle emissions

To come: HF tagged jets in sPHENIX

Particle flow

- Almost half of the jet energy is carried by the neutral particles
 - The importance to study full jets
 - sPHENIX has the first mid-rapidity HCAL at RHIC!
- Initial implementation of particle flow at sPHENIX to connect charged tracks and calorimeter information

Marzia Rosati

Hadronization of charm and bottom hadrons

HF baryon/meson ratio enhancement

Preeti Dhankher

- The Λ_c/D^0 ratio is enhanced at low p_T even in pp collisions.
- The Λ_b/B^0 ratio is multiplicity dependent in pp collisions.

Described by color reconnection, quark-coalescence and statistical hadronization models.

Anthony Frawley 6/13/2024

Energy dependence of J/ψ modification

The energy dependence is a mix of strongly energy dependent effects:

- •Gluon nPDFs
- Nuclear absorption (collisions with nucleons)

Wei Zhang

- Hot matter effects
- charm coalescence at hadronization (huge charm production at LHC)

RHIC/AGS Annual User's Meeting 2024

ψ(2S) / J/ψ ratio in small(er) systems

New measurements by STAR in **intermediate mass systems** show strong differential suppression of the $\psi(2S)$ relative to the J/ψ .

ψ(2S) in Pb-Pb at LHC

MInjung Kim

ψ(2S) behavior at LHC energies mirrors J/ψ behavior in PbPb.

- •ψ(2S) regeneration at low p_T.
- •Well described by transport model.

Bottomonium at RHIC

Wei Zhang

STAR measurements of Y(1S) and Y(2S)

•Extended to Zr+Zr and Ru+Ru collisions at 200 GeV collision energy.

Bottomonium at LHC

Beautiful R_{AA} data from all experiments.

Minjung Kim

Ongoing campaign to increase precision for Y(2S) and Y(3S).

Ming Liu

J/ψ event multiplicity at RHIC PH※ENIX J/ψ Yields vs Event Multiplicity: All Together

J/ψ event multiplicity at RHIC

PYTHIA vs Data: Multi-Parton-Interactions PH*ENIX

- PYTHIA8 Detroit tune reasonably agree with PHENIX data, with MPI
 w/o MPI, fit failed badly
- Proper understanding of the Underline Events is important

Bottomonium production vs. event activity

- Y(2S)/Y(1S) and Y(3S)/Y(1S) decreases with multiplicity in pp as well as in p-Pb collisions
- Decreasing trend with multiplicity seen for all azimuthal angles at high p_T
 → Connection to underlying event (UE)

Minjung Kim UC Berkeley

RHIC/AGS Annual Users' Meeting12. June. 2024 (Wed.)

27

To come: sPHENIX Bottomonium

Mass resolution of ~ 100 MeV/c² enables the separation of all three Upsilon states. Anticipated performance (assumes Y(3S) suppression similar to LHC energy):

