STAR Highlights - 2024 RHIC/AGS annual users' meeting

Yicheng Feng (for the STAR Collaboration)

Purdue University

June 13, 2024

PURDUE

NIVEBSITY

Supported in part by the

U.S. DEPARTMENT OF

Office of

Science

A New Era of Discovery Guided by the New Long Range Plan for Nuclear Science

STAR detector

Outline

- 1. Jet & Heavy Flavor
- 2. Flow
- 3. QCD critical point search
- 4. Chirality/Vorticity
- 5. Hyperon-nucleon interaction

Jet modification

[STAR, arXiv:2309.00145,2309.00156]

- ▶ recoil-jet yields per trigger (Y) ratio Au+Au over p+p, $I_{AA} < 1 \rightarrow$ medium-induced yield suppression \rightarrow jet quenching
- greater suppression in smaller "jet radius" $R \rightarrow$ jet broadening

$$\begin{split} I_{AA} &= \frac{Y^{\text{Au}+\text{Au}}(p_{T,\text{jet}}^{\text{ch}},R)}{Y^{p+p}(p_{T,\text{jet}}^{\text{ch}},R)}\\ \mathfrak{R}^{\frac{\text{small}\cdot R}{\log e^{R}}} &= \frac{Y^{\text{A}+\text{A}}(p_{T,\text{jet}}^{\text{ch}},\text{small }R)}{Y^{\text{A}+\text{A}}(p_{T,\text{jet}}^{\text{ch}},\text{large }R)} \end{split}$$

J/ψ production

0-80%

p+Ag 27 GeV

0 n+W 99 GeV

- No significant energy or system dependence
- ▶ $\psi(2s)$ over J/ψ double ratio < 1 → sequential suppression

J/ψ photoproduction in UPC

A. Ikbal, Tue. 4:00pm

STAR

 $x \approx M_{1/w}^2 / W_{\gamma^*N}^2$

1.5

Nuclear Suppression factor S⁴

0.5

15

Coherent SA

LTA shdowing

20

25

W_{v*N} (GeV)

CGC w substructure

CGC w/o substructure

Data

0.01

Data

Incoherent S^{Au}

CGC w. substructure

CGC w/o substructure

35

TA shdowing

[STAR, arXiv:2311.13637, arXiv:2311.13632]

- At photon-nucleon center-of-mass energy W_{γ*N} of 25 GeV, the coherent and incoherent J/ψ cross sections of Au nuclei are found to be (71 ± 10)% and (36 ± 7)%, respectively, of that of free protons.
 - comparison with models \rightarrow possible shadowing effect, color glass condensate

 $S^{\rm Au}$: ratio between J/ψ cross section and the impulse approximation (IA). IA neglects all nuclear effects except for coherence.

30

Outline

1. Jet & Heavy Flavor

Flow: the collective motion of produced particles

$$rac{dN}{d\phi} \propto 1 + \sum_{n=1} 2v_n \cos n(\phi - \Psi_{ ext{RP}})$$

2. Flow

- 3. QCD critical point search
- 4. Chirality/Vorticity
- 5. Hyperon-nucleon interaction

direct flow (v_1)

elliptic flow (v_2)

Δv_1 combination dependence on charge and strangeness

A. Ikbal, Tue. 4:00pm A. Dash, Wed. 4:30pm

Δq	ΔS	Δv_1 combination
0	0	$[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$
1	2	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
$\frac{4}{3}$	2	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
2	6	$[\overline{\Omega}^+(ar{s}ar{s}ar{s})] - [\Omega^-(sss)]$
$\frac{7}{3}$	4	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$

[STAR, arXiv:2304.0283]

 \blacktriangleright K^- , \bar{p} , $\bar{\Lambda}$, ϕ , $\bar{\Xi}^+$, Ω^- , $\bar{\Omega}^+ \rightarrow$ no u, d quarks \rightarrow no transported quarks

- assuming coalescence $\rightarrow d\Delta v_1/dy \propto \Delta q, \Delta S$
- qualitatively consistent with Hall effect (Hall>Faraday+Coulomb) in 10-40% centrality

v_1 splitting and possible EM effect

D. Shen, Tue. 9:25am A. Dash, Wed. 4:30pm

[STAR, PRX 14(2024)011028

- particle-antiparticle v_1 splitting $d\Delta v_1/dy$
- ▶ pion, kaon, proton → qualitatively interpreted by transported quark + electromagnetic field (Hall<Faraday+Coulomb) in peripheral collisions.</p>

Other possibility: baryon inhomogeneities? [arXiv:2305.08806] 9/25

Excess proton flow v_1 in BES-II

$$N_p v_{1,p} = N_p v_{1,\text{medium}} + (N_p - N_{\bar{p}}) v_{1,\text{excess}}$$

assuming $v_{1,\text{medium}} = v_{1,\bar{p}}$

$$v_{1,\text{excess}} = \frac{v_{1,p} - v_{1,\bar{p}}}{1 - N_{\bar{p}}/N_p}$$

- BES-II: higher precision than BES-I
- ▶ $\sqrt{s_{_{\rm NN}}} > 11.5$ GeV flat scale; $\sqrt{s_{_{\rm NN}}} \le 11.5$ GeV deviate → change in medium/collision dynamics
- \blacktriangleright Mean field model predicts the trend at low $\sqrt{s_{_{\rm NN}}}$, but higher \rightarrow data to constraint model EOS

Other possibility: baryon inhomogeneities? [arXiv:2305.08806] 10/25

v_1 of light and hypernuclei at FXT

- dv_1/dy scales with mass number
- $\sqrt{s_{_{
 m NN}}}\downarrow
 ightarrow \mu_B \uparrow
 ightarrow$ light and hyper nuclei abundance \uparrow
- $\blacktriangleright \sqrt{s_{\rm NN}} \downarrow \rightarrow d(v_1/A)/dy \uparrow$
- ▶ JAM2 mean field + coalescence calculations explains the energy dependence

v_2 at FXT – breaking of NCQ scaling

P. Sinha, Tue. 10:45am E. Duckworth, Tue. 3:00pm

 $\begin{array}{l} \mbox{partonic collectivity} \\ \rightarrow \mbox{ NCQ scaling: number of } \\ \mbox{constituent quark scaling} \\ \rightarrow \mbox{ hadron flows follow the } \\ \mbox{same scaling } \frac{v_2}{n_q} \mbox{ vs. } \frac{m_T-m_0}{n_q} \\ \mbox{or } \frac{v_2}{n_q} \mbox{ vs. } \frac{p_T}{n_q} \end{array}$

▶ NCQ scaling breaks at $\sqrt{s_{_{\rm NN}}} \le 3.2$ GeV → shadowing effect + hadronic interaction

Imaging nuclear shape from heavy-ion collisions

P. Sinha, Tue. 10:45am

model contraints

from B .

from R_{ise if}

from Runs

confidence contours at 10%, 30%, 60%, and 90% ----- from R. or R. data

[STAR, arXiv:2401.06625]

• Nuclear surface shape $R(\theta, \phi) = R_0(1 + \beta_2[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}])$

► Central U+U/Au+Au ratio of $\langle v_2^2 \rangle$, $\langle (\delta p_T)^2 \rangle$, $\langle v_2^2 \delta p_T \rangle$ data \rightarrow nonflow estimate/subtraction \rightarrow compare to hydro (IP-Glasma+MUSIC) \rightarrow estimate U nuclear shape parameter β_{2U}

Outline

1. Jet & Heavy Flavor

2. Flow

- 3. QCD critical point search
- 4. Chirality/Vorticity
- 5. Hyperon-nucleon interaction

Net-proton fluctuation in BES-II

 \sqrt{s}

Y. Huang, Wed. 2:30pm B. Mondal, Poster

- non-monotonic behavior expected around critical point
- \blacktriangleright BES-II \rightarrow measurements with higher precision compared to BES-I
- C_4/C_2 in 0-5% \rightarrow deviation from 70-80% and non-CP models ~ 20 GeV

Outline

1. Jet & Heavy Flavor

2. Flow

3. QCD critical point search

4. Chirality/Vorticity

Spin transfer to Λ from polarized p+p at 200 GeV

- D_{LL} longitudinal spin transfer rate from polarized p to Λ(Λ̄)
- D_{TT} transverse spin transfer rate from polarized p to Λ(Λ̄)
- ► consistent with models → helpful to understand the spin structure of nucleons and hyperons

Λ global polarization

- \blacktriangleright updates of BES-II $\sqrt{s_{_{\rm NN}}}=7.7-17.3$ GeV with high precision
- Λ , $\bar{\Lambda}$ opposite magnetic moment $\rightarrow \vec{B}$ field enhances $P_{\bar{\Lambda}}$ and reduce $P_{\Lambda} \rightarrow$ splitting expected
- \blacktriangleright No splitting is observed within uncertainties between Λ and $\bar{\Lambda}$ global polarization

Λ local polarization

X. Gou, Tue. 9:00am

- A polarization along beam has dependence on azimuth w.r.t. $EP \rightarrow$ vorticity pattern expected due to elliptic and triangular anisotropic flow
- ▶ comparison with models → measurements provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization

Isobar blind analyses for the CME

- Chiral Magnetic Effect (CME): magnetic field + chirality anomaly from QCD vacuum fluctuation -> charge separation phenomenon
- ▶ Initial expectation: ${}^{96}_{44}$ Ru, ${}^{96}_{40}$ Zr: same A, different $Z \rightarrow$ same background, different signal Ru+Ru: proton number $\uparrow \rightarrow$ magnetic field $\uparrow \rightarrow$ CME signal $\uparrow \rightarrow \Delta \gamma / v_2 \uparrow \rightarrow \text{Ru}/\text{Zr}>1$
- ▶ STAR blind analysis [STAR, PRC 105(2022)014901] \rightarrow isobar ratios Ru/Zr<1, opposite to the initial expectation \leftarrow multiplicity diff. \leftarrow nuclear structure [Xu et al., PRL121(2018)022301].

Isobar post-blind analyses for the CME

Y. Feng, Wed. 5:00pm

flow-induced backgrounds: resonance decays \rightarrow estimated by pair excess $r = \frac{N_{OS} - N_{SS}}{N_{OS}}$ nonflow in v_2 measurement: fit two-particle $(\Delta \eta, \Delta \phi)$ 2D distribution to decompose

3-particle nonflow:

 $_{\rm HIJING}$ model \rightarrow no flow \rightarrow solely 3p nonflow bkg

- Post-blind: nonflow background baseline estimate → CME upper limit 10% (95% CL) [STAR. arXiv:2308.16846, 2310.13096].
- CME is one of the most important physics of the field. Nonflow removal is critical towards final signal characterization.

Outline

1. Jet & Heavy Flavor

2. Flow

- 3. QCD critical point search
- 4. Chirality/Vorticity
- 5. Hyperon-nucleon interaction

$p/d-\Lambda$ correlations in Au+Au at 3 GeV

Correlation Function (CF): $C(\mathbf{k}^*) = \mathcal{N} \frac{\text{same event dist. for } \mathbf{k}^*}{\text{mixed event dist. for } \mathbf{k}^*}$

- Lednicky-Lyuboshitz (L-L) Approach
 - modeling $C(k^*) = \int d^3 r^* S(r^*) |\Psi(r^*, k^*)|^2$
 - ► S-wave assumed $\Psi(\boldsymbol{r}^*) = e^{-i\boldsymbol{r}^* \cdot \boldsymbol{k}^*} + \frac{f(\boldsymbol{k}^*)}{r^*} e^{i\boldsymbol{r}^* \cdot \boldsymbol{k}^*}$ $f(\boldsymbol{k}^*) \approx \left(\frac{1}{f_0} + \frac{d_0 \boldsymbol{k}^*}{2} - i\boldsymbol{k}^*\right)^{-1}$
 - Gaussian emission source assumed $S(\mathbf{r}^*) = (2\sqrt{\pi}R_G)^{-3}e^{-\mathbf{r}^{*2}/(4R_G^2)}$

$$\begin{array}{l} p-\Lambda \mbox{ spin-average (fm)} \\ f_0=2.32^{+0.12}_{-0.11}, \ d_0=3.5^{+2.7}_{-1.3} \\ d-\Lambda \ mixed \ with 2 \ states (fm) \\ {}^2S_{1/2} \ (D): \ f_0=-20^{+3}_{-3}, \ d_0=3^{+2}_{-1} \\ {}^4S_{3/2} \ (Q): \ f_0=16^{+2}_{-1}, \ d_0=2^{+1}_{-1} \end{array}$$

assuming Gaussian source $S \rightarrow$ source size R_G

 k^* momentum in pair rest frame f_0 scattering length d_0 effective range

Hypernuclei production – first observation of $\frac{4}{\Lambda}\bar{H}$

- First observation of antimatter hypernucleus $rac{4}{ar{\Lambda}}ar{H}$
- Measurements of ${}^3_{\Lambda}H$, ${}^3_{\bar{\Lambda}}\bar{H}$, ${}^4_{\Lambda}H$, ${}^4_{\bar{\Lambda}}\bar{H}$ yields and lifetimes.
- Yield ratios \rightarrow consistent with thermal model and previous publications.

datasets: Au+Au 200GeV Ru+Ru, Zr+Zr, 200GeV U+U 193GeV

- STAR continues producing results of great impact for important physics on QCD
- Many new analyses ongoing
- Fully upgraded STAR detector
 - BES and forward upgrades in operation since 2022
 - Run 23 was the 1^{st} top energy Au+Au with all upgrades
- Unprecedented high statistics Au+Au/p+p/p+Au data in 2023-25

[[]STAR, BUR Runs 24-25]

Backup

QGP temperature estimate from dielectron spectra

 $\begin{array}{l} \leftarrow \text{ thermal} \\ \text{dielectrons (decay} \\ \text{bkgd's removed,} \\ \text{except for } \rho^0) \end{array}$

- ▶ low-mass region (LMR): ρ^0 dissolved in QGP, closer the phase transition → fit by ρ^0 decay Breit-Wigner f^{BW} with Boltzmann factor $e^{-M/k_BT} \rightarrow T_{\text{LMR}}$
 - measurements (STAR: BES-I, BES-II; NA60; HADES) consistent with LQCD calculation and thermal models
- ► intermediate-mass region (IMR): earlier in QGP \rightarrow fit by Boltzmann function $\rightarrow T_{IMR}$
 - $T_{\rm IMR} > T_{\rm LMR}$

Small system flow

Z. Yan, Tue. 2:00pm P. Sinha, Tue. 10:45am

- ▶ v₂(p_T) dependent on the colliding systems, v₃(p_T) system-independent
- \triangleright $v_2(p+Au) < v_2(d+Au, {}^{3}He+Au)$
 - \rightarrow sub-nucleonic eccentricity fluctuations

[STAR, PRL 130(2023)242301]

[STAR, arXiv:2312.07464]

Net-proton fluctuation in p+p at $\sqrt{s_{_{\rm NN}}}=200~{\rm GeV}$

[STAR, arXiv:2311.00934]

- ratios below the expectations of Skellam distribution
- PYTHIA8 calculations fail to reproduce those ratios
- connecting to Au+Au results at 200 GeV