The 2nd Detector at the EIC

- Motivation
- Activities
- IP-8 & Detector
- Physics Examples
- Summary

Duke

Anselm Vossen

on behalf of the EICUG working group on the 2nd Detector

A second detector at the EIC

- Two interaction regions that can house detectors
- IP6: Project detector ePIC

• IP8: Detector 2

A Strong Motivation for a 2nd Detector

- EIC community recognized the need for two detectors early
 - Most facilities had two detectors for a reason:
 - Discoveries need independent verification
 - Two experiments have uncorrelated systematics:
 1+1 > 2
 - Complementarity in technology
 - Complementarity in strength
- EIC community can support 2 detectors!
 - ≈ 1400 members, still growing→about 2x BNL, Tevatron experiments

THE ELECTRON-ION COLLIDER

The Benefits of Two Detectors

Brochure Spring 2022

JLAB-PHY-23-3761

Motivation for Two Detectors at a Particle Physics Collider

Paul D. Grannis^{*} and Hugh E. Montgomery[†] (Dated: March 27, 2023)

Complementarity examples from HERA

4

- Importance of 2 detectors demonstrated by
 - Confirmation of precision measurements
 - Confirmation of unexpected effects (e.g. diffraction)
 - Resolution of spurious effects (pentaquarks)
 - -Use of uncorrelated systematics (1+1 > 2)

Steps towards a 2nd detector

 Strong support in the community with early NSAC/NAS documents assuming two detectors, discussions at EICUG meetings, 2nd detector brochure

→DPAP panel endorsing 2nd detector at IP8 with delayed start of project detector (3-5) years (Spring 2022)

- Focus on complementarity, take advantage of technology progress
- Take advantage of 2nd focus
- DPAP report: "The DOE project includes significant funding for the construction of one EIC detector, [...] and a conceptual design for a second interaction region."
- EICUG Steering Committee forms working group to continue the Det2/IP8 effort at 2022 annual meeting
 - Engage broader community
 - Work with steering committee to recruit new institutions
 - Identify R&D opportunities
 - Facilitate the development of a unified concept for a general-purpose detector at IR8. In particular, the 2nd detector should be complementary to the project detector at IR6 and may capitalize on the possibility of a secondary focus at IR
- NSAC Facilities Subcommittee Report (4/2024) assesses the science case of Det2 as important

Activities of the Working Group

- Outreach
- Open Meetings to discuss science and detector options
- Organization of Workshops
 - 2nd Detector Incubator meeting Dec 2022@SBU
 - →First discussion of required baseline measurements, opportunities and detector options
 - -1st Int. Workshop on a 2nd Detector for the EIC, May 2023@Temple

→move towards concrete physics and detector options

- Renee Fatemi (ex-officio)
- Sangbaek Lee (ANL)
- Anselm Vossen (Duke/JLAB)
- Thomas Ullrich (BNL/Yale)
- Pawel Nadel-Turonski (CFNS/SBU)
- Simonetta Liuti (UVA)
- Detector WG
 - [Klaus Dehmelt (CFNS/SBU)]
 - Ernst Sichtermann (LBNL)
- Physics WG
 - Charles Hyde (ODU)
 - Bjoern Schenke (BNL)
- Software Custodians
 - Wenliang (Bill) Lee
 - Zhoudunming (Kong) Tu

Beamline at 2nd IP with 2nd Focus

- Larger crossing angle (35 vs 25 mRad)
- Luminosity sharing (but only relevant at full luminosity)
- Far forward detectors could be optimized in a complimentary way
- 2nd Focus allows the detection of charged particles in Roman Pots for much lower p_T than for IP6

2nd Focus →order of magnitude improvement of far forward detection of (nuclear) remnants

New physics opportunities

-Excellent low- p_T acceptance for protons and light nuclei from exclusive reactions \rightarrow low t

-Detection of target fragments makes it possible to

- veto breakup to study coherent processes
- study the final state when breakup occurs (e.g. A 1 etc)

Detector Hall

RCS line (left) in IR8

Constraints on IR

- Electron line passes at 3m → constrains on fringe B field (< 10 Gauss) (and detector radius)
- Size of experimental hall comparable to IP-6 (a bit wider), assembly area more constraint

What kind of detector do you want to have?

- Magnet design is central, other choices flow from there
- Complementarity but also capable of doing the full physics program for mutual cross-check
 →Solenoid
- Would like to have higher B field for tracking performance
- Space constraint
 - Large bore magnet: No instrumented flux return for $B \ge 2.5 T$
 - Smaller bore magnet can have 3T and instrumented flux return
- Points of complementarity
 - 2nd focus
 - MuonId
 - ECal
 - Low Q2?

- ...

Complementarity of Technologies

- Generic R&D program central
- Funding $\approx \$2M$ /year
- Aimed at Detector 2, or upgrades of Detector 1

Торіс	# of proposals before filtering	# of proposals after filtering
Calorimetry	5	5
PID (non-TOF)	3	3
Gaseous Precision Timing and/or Tracking	3	3
Front End Electronics	3	3
Silicon Detectors	6	5
Software Supporting Electronics/Detector Design or Physics Program	4	4
"Other New Detectors"	3	1
Studies to Support or Expand the Physics Program	3	1

Table by D. Mack at 2nd detector workshop at Temple See also T. Ullrich overview of technologies¹at same meeting

Examples of R&D project for 2nd Det:KLM

Simon Schneider, Rowan Kelleher, Nilanga Wikaramachchi

- Iron/Scintillator sandwich integrated in flux return
- μ Id at low ($\approx 1 \ GeV$) momenta
- R&D on fast scintillator (readout) ($\mathcal{O}(50ps)$) for ToF
- Longitudinal segmentation for better h/μ ID , energy reconstruction
- Possible solution for endcap HCAL
- Physics Motivation: Muon channels (J/Psi DDVCS), cost effective HCAL AV, Yordanka Illeva, Will Jacobs, ¹²

 $p < 1 \ GeV$ In barrel

Example II: Z-tagging Mini DIRC for 2nd Focus

C.Hyde et al.

- Z information on fragments (in addition to A/Z)
- E.g. tagging of specific incoherent channels (1n, 1p, 2p, 1n1p...)

Example Physics: Isotope production at EIC

Example Physics: exclusive coherent scattering on nuclei

 For heavier nuclei, incoherent events can be suppressed with a high efficiency by detecting the fragments (including neutrons and photons) from the breakup.

Example: A-1 tagging with a 2nd focus using a 90Zr beam

arxiv:2208.14575

Example: vetoing breakup in coherent using a 2nd focus

Jihee Kim

Veto inefficiency for incoherent events

Fragment detection using the Roman pots at the 2^{nd} focus provides a stronger veto at larger values of *t*.

Example: Diffractive dijects to access gluon GTMDs

• Second focus important for proton acceptance

High Resolution ECAL could help DVCS \rightarrow Complimentarity

- α(e,e'γ)α:
 - -(10 GeV)x(137.5 GeV/u)
 - $-Q^2 \in [12,36] \text{ GeV}^2$
 - Orsay-Perugia (TOPEG) Generator
 - PbWO₄: 1% $\oplus \frac{2\%}{\sqrt{E}} \oplus \frac{1\%}{E}$ - EMCal: $\frac{12\%}{\sqrt{E}}$
- Bin Migration grows with x_B and strongly depends on EMCal resolution.

Charles Hyde

Reference schedule for a 2nd IR and Detector

Jim Yeck, EIC 2nd detector WS, May 2023

Summary and Outlook

- A second detector at the EIC has broad community support
- Complementarity and cross-check with first detector
- New physics opportunities enabled by high-dispersion 2nd focus
 - Exclusive processes
 - -Isotopes
- Areas of complementarity with 1st detector based on instrumentation choices
 - Muon Detection
 - -ECAL
 - medium-low Q^2 acceptance

- -

— . . .

- Strawman detector design based on solenoid with 2 3T field and KLM in flux return
- Existing fast simulations and evolving DD4HEP (IP8+FF, KLM,..) simulations basis for upcoming physics studies and concretization of detector concept
- All interested are welcome to join!

General support

- EICUG can support 2 dets
- Complimentarity
- Cross-check
- Technologies

EICUG structure/procedure

DOE long range plan, activities

Small dipole covering the range between the endcap and Roman pots

Coherent DVCS on light nuclei. Unfolding the Bin Migration

TOPEG event generator DELPHES FastMC

- Systematic uncertainty in reconstructed cross section estimated by varying PbWO₄ resolution event-byevent ±10%
- Error bars from uncertainty of bin-migration remain small.

Golden Channels Strawman from 1st meeting

CHANNEL	PHYSICS	DETECTOR II OPPORTUNITY
Diffractive dijet	Wigner Distribution	detection of forward scattered proton/nucleus + detection of low \textbf{p}_{T} particles
DVCS on nuclei	Nuclear GPDs	High resolution photon + detection of forward scattered proton/nucleus
Baryon/Charge Stopping	Origin of Baryon # in QCD	PID and detection for low $p_T pi/K/p$
${\rm F_2}$ at low x and ${\rm Q^2}$	Probes transition from partonic to color dipole regime	Maximize Q ² tagger down to 0.1 GeV and integrate into IR.
Coherent VM Production	Nuclear shadowing and saturation	High resolution tracking for precision t reconstruction

R Fatemi

Some measurements at a 2nd Detector

- Dijets with forward tagging
- Nucleon stuff
- Low Q2 tagger
- Incoherent diffraction
- Exotic isotopes
- EXTENDED COVERAGE for precision electromagnetic calorimetry important
- for DVCS on nuclei
- BACKWARD HADRONIC CALO Low-x physics, reconstruction of current jets
- in the approach to saturation
- Exclusive reactions on nuclei with tagging leftover nucleus
- <u>https://indico.bnl.gov/event/17693/contributions/70919/attachments/44924/</u> 75857/ExclusiveNuclei_2022-03-6_CHyde.pdf
- Strawman for golden measurements from 1st meeting

Complementarity, IP

- Larger crossing angle (35 vs 25 mRad)
- Shorter space for detector
- Luminosity sharing (but only relevant at full luminosity)