Generative AI for full-detector, whole-event simulation of heavy-ion collisions

Yeonju Go^a, Dmitrii Torbund Meifeng Lin^a, Haiwa a: Brookhav

RHIC/AGS Annual Users' Meeting June 11, 2024 Brookhaven National Laboratory

- Yeonju Go^a, Dmitrii Torbunov^a, Jin Huang^a, Yihui Ren^a, Yi Huang^a, Meifeng Lin^a, Haiwang Yu^a, Brett Viren^a, Tim Rinn^b
 - a: Brookhaven National Laboratory
 - b: Los Alamos National Laboratory

Simulations of Relativistic Heavy Ion Collisions

• O(1000) particles in one nuclear collision event + thousands shower steps per particle Simulation of the interaction of particles with detectors is high complexity and computationally intensive work

Yeonju Go (BNL)

Simulations of Relativistic Heavy Ion Collisions

- O(1000) particles in one nuclear collision event + thousands shower steps per particle Simulation of the interaction of particles with detectors is high complexity and computationally intensive work
- Electron-Ion Collider will need a large amount of simulations of full detector with both physics and machine background

Yeonju Go (BNL)

Simulations of Relativistic Heavy Ion Collisions

- O(1000) particles in one nuclear collision event + thousands shower steps per particle
 - Simulation of the interaction of particles with detectors is high complexity and computationally intensive work
- Electron-Ion Collider will need a large amount of simulations of full detector with both physics and machine background
- <u>ML can speed up and produce large amount of the heavy</u> ion event simulations!

Yeonju Go (BNL)

We introduce *full detector whole-event ML* simulations for heavy ion collisions

sphenix Detector at RHIC

- Hermetic Electromagnetic & Hadronic calorimeters

Heavy Ion Collision Event

- HIJING Monte Carlo event generator for Au+Au collisions at $\sqrt{s_{\rm NN}}$ =200 GeV
- Geant4 full detector simulation with the sPHENIX geometry
 - Head-on collision (0-10% Centrality)

+Au collisions at $\sqrt{s_{NN}}$ =200 GeV HENIX geometry

Side collision (40-50% Centrality)

Tower Distributions

• Full calorimeter **towers** (Electromagnetic + Inner hadronic + Outer hadronic) $\Rightarrow -1.1 < \eta < 1.1, \quad 0 < \phi < 2\pi$ $\Rightarrow (24 \ge 64)$ bins in (η, ϕ)

Generative Al

Generative Adversarial Networks (GAN)

actively used in high energy physics (e.g. arXiv:1712.1032, arXiv:2209.07559, EPJC 80 (2020) 688, arXiv:2210.14245) FIG. 2: Three-dimensional representation of a 10 GeV e^+ incident perpendicular to the center of the detector. Not-to-scale separation among the longitudinal layers is added for visualization purposes.

Generative AI

Generative Adversarial Networks (GAN)

actively used in high energy physics (e.g. arXiv:1712.1032, arXiv:2209.07559, EPJC 80 (2020) 688, arXiv:2210.14245)

• **Diffusion Models**: text-to-image generation in industry (e.g. StableDiffusion, Midjourney, Dalle-2)

Yeonju Go (BNL)

FIG. 2: Three-dimensional representation of a 10 GeV e^+ incident perpendicular to the center of the detector. Not-to-scale separation among the longitudinal layers is added for visualization purposes.

Generative AI

RHIC/AGS Annual Users' meeting / 2024 June 11

7

Generative Al

• Diffusion Models:

text-to-image generation in industry (e.g. StableDiffusion, Midjourney, Dalle-2)

known for high fidelity

Diffusion Model (DALL·E3 by OpenAI) generating a sPHENIX meeting Note difficulty in generating features such as text

Denoising Diffusion Probabilistic Model (DDPM)

- DDPM provides high quality data from random noise
- Forward process: add random gaussian noise
- Reverse process: use neural network and generate data
- In real application, O(1,000) steps are used

 \mathbf{X}_T

Display of Generated Events

Yeonju Go (BNL)

RHIC/AGS Annual Users' meeting / 2024 June 11

Display of Generated Events

Performance: Transverse Energy (0-10%)

Yeonju Go (BNL)

RHIC/AGS Annual Users' meeting / 2024 June 11

10

Performance: Transverse Energy (0-10%)

- DDPM outperforms GAN in overall distribution w/ great stability and accuracy

Yeonju Go (BNL)

RHIC/AGS Annual Users' meeting / 2024 June 11

10

Performance: Transverse Energy Fluctuation (0-10%)

4x4 Tower

- GAN fails to describe fluctuation
- DDPM outperforms GAN w/ great stability, a few percent-level accuracy

Performance: Transverse Energy Fluctuation (0-10%)

GAN fails to describe fluctuation

DDPM outperforms GAN w/ great stability, a few percent-level accuracy

Performance: Transverse Energy (40-50%)

 DDPM outperforms GAN great stability, good agreement with HIJING+G4 at high probability region

lergy [GeV] -0.5 0 _1

Performance: Transverse Energy (40-50%)

DDPM outperforms GAN
great stability, good agreement with HIJING+G4 at high probability region

Performance: Transverse Energy (40-50%)

- DDPM outperforms GAN
- great stability, good agreement with HIJING+G4 at high probability region • Non-gaussian rare tail at the high energy region \rightarrow challenge to reproduce

Trade-off between Training time and Fidelity

- epoch ~ training duration
- **DDPM** models with the higher epochs give better performance! → but, the higher the epochs, the longer the training time

Trade-off between Generation time and Fidelity

• **DDPM** models with the higher de-noising steps give better performance! → but, the higher the de-noising, the longer the generation time

How long does it take to simulate a large sample?

- DDPM provide a speedup of O(100), considering a 32-core CPU equivalent to a GPU

9	Speedup	CPU/GPU
nt	1	Single CPU
	~1,800X	NVIDIA RTX A6000
•	~5,700,000X	NVIDIA RTX A6000

• GAN is faster, but the DDPM exhibits high fidelity in describing the truth ground (HIJING+GEANT4)

Applications

- There is a need for a large number of full-detector simulation events, e.g. heavy ion collisions
 - beam background events for EIC detectors
- Train the model using a relatively modest number (at the level of millions) and then accelerate the production of much larger samples (at the level of billions)
- Rare signal events, e.g. jets, can be embedded in these simulation events

RHIC/AGS Annual Users' meeting / 2024 June 11

Applications - Jet Background Subtraction (1)

 UVCGAN (UNet Vision Transformer cycle-consistent Generative Adversarial Network) → arXiv:2203.02557 [cs.CV]

unpaired image-to-image translation; bridging gap between simulation and data reference

17

Applications - Jet Background Subtraction (2)

Yeonju Go (BNL)

Applications - Jet Background Subtraction (3)

Yeonju Go (BNL)

Conclusion

- Simulations of high energy nuclear experiments highly complex and computationally intensive
 - both fidelity and speed is important

Generative AI can speed up and produce large amount of the heavy ion event simulations!

Conclusion

- Simulations of high energy nuclear experiments highly complex and computationally intensive both fidelity and speed is important
- Diffusion model (DDPM) was used to generate the whole-event full-detector simulated <u>calorimeter</u> data in high fidelity for the first time in heavy ion collisions → GAN used as a reference
 - ➡ DDPM outperforms GAN for scientific fidelity
 - feature
- Paper has been submitted to PRC and available: <u>arXiv:2406.01602</u>

Generative AI can speed up and produce large amount of the heavy ion event simulations!

trade-off found between training / generation duration and the quality of reproducing the rare

Our Team

Yeonju Go

Dmitrii Torbunov

Jin Huang

Tim Rinn

Yi Huang

Haiwang Yu

Shinjae Yoo

- The LDRD Program at Brookhaven National Laboratory, sponsored by DOE's Office of Science under Contract DE-SC0012704, supported this work. training and validation of our algorithm.

- We thank the sPHENIX collaboration for access to the simulated dataset, which was used in the

Contacts: {ygo, dtorbunov, jhuang, yren}@bnl.gov

Yihui Ren

Meifeng Lin

Brett Viren

Acknowledgement

21

ACAT 2024 @ Stony Brook University, NY, USA / 2024 March 11-15

Early Universe and Quark Gluon Plasma

Yeonju Go (BNL)

DDPM Configuration

- number of diffusion steps T: default 8000 / variation [1000, 16000]
- variance schedule β_t : default 0.1 / variation [0.02, 0.2]
- training batch size: default 128 / variation [100, 12500]
- training steps per epoch: default 2000
- epoch: default 4000 / variation [100, 4000]
- training with the Adam optimizer with learning rate 10-4
- trained with 600,000 events per each centrality bin
- tested with 100,000 events per each centrality bin
- neural network architecture (U-ResNet + Attention)
- depth/width of the model
 - U-Net encoder-decoder stage, channels per stage: 32, 64, 128 each of which comprised of two ResNet blocks

Performance: Transverse Energy Fluctuation (40-50%)

 DDPM outperforms GAN great stability, a few percent-level accuracy

Yeonju Go (BNL)

	0
	T

Batch Size Dependence

 Batch size not only introduces different random seeds and but also changes variance schedule (β_t)

