An Experimentalist's Search for Pathlength Dependent Energy Loss in the QGP

Megan Connors Georgia State University RHIC AGS Users Meeting June 12, 2024

What is a Path Length Dependent energy loss

- Landau-Pomeranchuk-Migdal (LPM) effect
 - Due to interference of radiation with multiple scatterings in the QGP
 - Leads to an L² dependence
- Longer L results in greater energy loss
- Broadening also has L dependence

 $\langle k_{\perp}^2 \rangle \equiv \hat{q}L$

• Experimentally we do not know L

Experimentally measuring path length dependence

- In plane less L less E_{loss}
- Out-of-plane more L more E_{loss}
- How to vary path length?
 - System size
 - Angle with respect to reaction plane
 - Surface bias
- Challenges
 - Fluctuations
 - Surface bias
 - Energy density
 - Quark/gluon fractions
 - Flow

Noronha-Hostler 2016 J. Phys.: Conf. Ser. 736 012019 3 M. Connors (RHIC/AGS AUM 2024)

Early Pathlength Dependence at RHIC with hadrons

- Suppression of pions has pathlength dependence
- Toward out of plane:
 - Larger L \rightarrow More E_{loss} \rightarrow Lower R_{AA}

Pathlength Dependent Fractional Momentum Loss?

- L and N_{part} based on Glauber Model calculation
- Scales with L²
- Next extend to in-plane vs out-of-plane:

Scaling relationships for in vs out-of-plane

• Scales better with N_{part} than L or dN/d η

More systems at RHIC

- Strong centrality dependence may indicate path-length dependent effects
- Need to disentangle from energy density

Using event plane angle

 High p_T track v₂ attributed to pathlength dependent energy loss

Relation between RAA(ϕ) and v₂: $R_{AA}(\phi) = R_{AA}(1 + 2v_2 \cos 2(\phi - \psi))$

Reconstructed jet v₂

- v₂ for R=0.2 jets consistent with the track v₂
- v_2 appears flat vs p_T

R dependence of reconstructed jet v₂

- Jet v2 measured for R=0.2, 0.4 and 0.6
- No clear R dependence

Pathlength Dependence at LHC with hadrons

- v₂ persists to very high p_T
- v₃ goes to zero

Phys. Lett. B 776 (2018)

Pathlength Dependence at LHC with jets

- Jet and track v2
- ~Agreement between LHC experiments

ALICE: PhysLetB.2015.12.047 ATLAS: PRL 111 152301 (2013)

Pathlength Dependence at LHC with jets

- Jet and track v2
- ~Agreement between LHC experiments
- Consistent with RHIC

ALICE: PhysLetB.2015.12.047

ATLAS: PRL 111 152301 (2013)

v_n with LHC jets

- 5.02 TeV extends to higher $p_{\rm T}$
- Consistent with v_2 measured at 2.76 TeV
- Small jet v₃

Jet v_n model comparison

- Reasonable agreement with LBT and LIDO for v_2 and v_3 for jet $p_T{>}100~\text{GeV}$

Reaction Plane Dependence for Dijets

• Dijet asymmetry is higher for out-of-plane than for in-plane dijets

Dijets v_n

- Dijet v_2 consistent with hadron v_2
- Dijet v_3 and v_4 consistent with zero

Jet-hadron correlations vs Reaction Plane

- Measure jet-h correlations for in, mid and out-of-plane jets
- Background subtraction to remove flow modulation

Jet-hadron correlations

- Compare integrated hadron yield out-of-plane/In-plane
- Ratio consistent with 1 implies no measured effect
- Same conclusion from RHIC and LHC
- Measurement is not sensitive to pathlength depedence
 - How does the leading particle affect surface bias

Event plane

• Can a bias be a tool?

Small Systems

arXiv:2212.12609

- No clear energy loss observed in small system studies
- Yet non-zero jet v_2 and high p_T hadron v_2
- Small systems play in important role in understanding where these effects turn on
 - O+O at LHC
 - p+Au at RHIC?

Can we turn off v_2 ?

- Yes! High p_T direct photons
 - Expect no modification and see no v₂

Controlling the origin of the jet

How sPHENIX can weigh in

• Jet v_n at low jet p_T overlapping with LHC results

- Predictions suggest R dependence
 - Not seen by STAR Isobar studies

Nucl. Phys. A 1043, 122821 (2022).

- Pathlength dependent energy loss expected and observed
- But a more quantitative description is evolving
- Models should consider Jet R_{AA} and v_2 as well as dijet measurements to get a more complete picture of the QGP....jet tomography
- Experimentalists should utilize the various tools
- Small system measurements and implications need more investigation
- Looking forward to sPHENIX results from Run 2025

BACKUP

M. Connors (RHIC/AGS AUM 2024)

Pathlength Dependent Fractional Momentum Loss?

- L and N_{part} based on Glauber Model calculation
- Can extend to in-plane vs out-of-plane

