Jet Substructure : Selected Short Stories

2024 RHIC/AGS Annual Users' Meeting

Dhanush Hangal (he/him)

June 12, 2024

Why Jets?

• Jets are rich objects whose formation involves rich QCD dynamics

Jet Substructure: Powerful tools in QCD

• Jet Substructure first used to tag and differentiate boosted objects from QCD jets

VS.

JHEP 1103:015.2011

W

0

Jet Substructure: Powerful tools in QCD

- Jets are rich objects whose formation involves rich QCD dynamics
- Jet Substructure first used to tag and differentiate boosted objects from QCD jets
- Jet substructure has since been critical in analyzing and studying
 - Parton Showers and hadronization processes ٠
 - Heavy flavor physics
 - Quark-Gluon Plasma physics among many others!

parton

splitting into two prongs

clustering

declustering

2024 RHIC & AGS Annual Users' Meeting

arXiv:2303.13347

iet

Jet Substructure: Grooming

• How can we make a jet robust against contamination from pileup and UE effects?

Jet Substructure: Grooming

Lawrence Livermore National Laboratory

- Grooming techniques systematically remove soft and wide-angle radiation
- Using C/A algorithm to recluster the jet imposes angular ordering ٠

Soft-Drop condition

Jet Substructure: Grooming

- Grooming techniques systematically remove soft and wide-angle radiation
- Using C/A algorithm to recluster the jet imposes angular ordering ٠

Soft-Drop condition

 $> z_{cut} (R_g/R_{iet})^{\beta}$

 $min(p_{T,1}, p_{T,2})$

 $z_g =$

Mapping the Evolution of a Jet

Lawrence Livermore National Laboratory

2024 RHIC & AGS Annual Users' Meeting

JHEP12(2018)064

The (Primary) Lund Jet Plane

JHEP12(2018)064

"The available phase-space is mapped to a triangle in a two dimensional (logarithmic) plane that shows the transverse momentum and the angle of any given emission with respect to its emitter."

The Lund Jet Plane

JHEP12(2018)064

"The available phase-space is mapped to a triangle in a two dimensional (logarithmic) plane that shows the transverse momentum and the angle of any given emission with respect to its emitter."

Each given emission creates new phase space (a triangular leaf) for further emissions.

Different regions are dominated by factorized processes, the LJP can be useful for tuning nonperturbative models and for constraining the model parameters of advanced parton shower (PS) Monte Carlo (MC) programs.

Lawrence Livermore National Laboratory

The Lund Jet Plane

Lawrence Livermore National Laboratory

The Lund Jet Plane

Lawrence Livermore National Laboratory

The (Primary) Lund Jet Plane Measurements

JHEP 05 (2024) 116

Phys. Rev. Lett. 124, 222002 (2020)

Lawrence Livermore National Laboratory

The (Primary) Lund Jet Plane Projections

Phys. Rev. Lett. 124, 222002 (2020)

Lawrence Livermore National Laboratory

The Lund Jet Plane Projections

Lawrence Livermore National Laboratory

Jets in Heavy-Ion Collisions

- Collide nuclei at the LHC and RHIC to produce droplets of ٠ hot, dense quark-gluon plasma
- Use jets as probes to study the properties of the QGP ٠

clustering

declustering

parton splitting

2024 RHIC & AGS Annual Users' Meeting

arXiv:2303.13347

Jet Substructure in Heavy-Ion Collisions

clustering What does the multiscale evolution of jets look like in presence declustering of the QGP? parton splitting into two prongs 138 fb⁻¹ (13 TeV) CMS hard 6 1.2 AK4 jets jet $p_{T}^{\text{jet}} > 700 \text{ GeV}, |y_{\text{int}}| < 1.7$ Î \triangleleft Y QGP 0.8 /GeV) k_T [GeV] d Emission density 700 Gev hadronizatior 0.6 10 ln(k 0.4 hadrons partons soft 0.2 jet substructure hadronikation iet algorithm haid Process temperature 0 0 0.5 1.5 2 2.5 3 3.5 4 Shape · jet mass $\ln(R/\Delta R)$ 10^{-1} 10^{-2} ΔR $\frac{m^2}{p_T R} m_{b,c} T$ $p_T R$ p_T $p_T r$ m $\Lambda_{\rm QCD}$

Lawrence Livermore National Laboratory

ALICE : r_g measurement

Lawrence Livermore National Laboratory

"A narrowing of the θ_g distribution in Pb–Pb collisions compared to pp collisions is seen, which provides direct evidence of the modification of the angular structure of jets in the quark–gluon plasma."

Soft-Drop condition

Phys. Rev. Lett. 128 (2022) 102001

STAR : r_g measurement

"We observe no significant modifications of the subjet observables within the two highestenergy, back-to-back jets, resulting in a distribution of opening angles and the splittings that are vacuum-like."

Soft-Drop condition

Phys. Rev. C 105 (2022) 44906

ATLAS : r_g yield in pp

"The rg distributions are observed to peak at lower values of r_{q} with increasing jet p_{T} "

ATLAS

2024 RHIC & AGS Annual Users' Meeting

Phys. Rev. C 107 (2023) 054909

Increasing jet p_T

ATLAS : R_{AA} vs. r_g

"The R_{AA} value is observed to depend significantly on jet r_g . Jets produced with the largest measured r_g are found to be twice as suppressed as those with the smallest r_g in central Pb+Pb collisions."

Lawrence Livermore National Laboratory

ATLAS : R_{AA} vs. (r_g and jet p_T)

Lawrence Livermore National Laboratory

ATLAS : R_{AA} vs. (r_g and jet p_T)

"The values of R_{AA} are observed to depend significantly on r_g , with a clear ordering with respect to the splitting angle."

Soft-Drop condition

 $z_g =$

 $\frac{\min(p_{T,1}, p_{T,2})}{2} > z_{cut} (R_g / R_{jet})^{\beta}$

ATLAS : R_{AA} vs. (r_g and jet p_T)

Lawrence Livermore National Laboratory

Photon-tagged Jets

Photon-tagged Jet Substructure

CMS : Photon-tagged jet r_g for $x_{Jy} > 0.8$

"It is found that jets with $p^{jet} / p^{\gamma} > 0.8$, i.e., those that closely balance the photon p^{γ}_{T} , are narrower in PbPb than in pp collisions."

Lawrence Livermore National Laboratory

CMS : Photon-tagged jet r_g for $x_{Jy} > 0.4$

"Relaxing the selection to include jets with $p^{jet} / p^{\gamma} > 0.4$ reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference."

Lawrence Livermore National Laboratory

CMS : Photon-tagged jet r_g for ($x_{J_{\gamma}} > 0.8$ vs. $x_{J_{\gamma}} > 0.4$)

"In contrast to the trends observed by the ALICE and ATLAS Collaborations for R_g in inclusive jet events, we do not observe a narrowing of the substructure of jets in R_g within the experimental uncertainties when selecting jets with $x_{yj} > 0.4$ and $p_{yT} > 100$ GeV."

Lawrence Livermore National Laboratory

CMS vs. ATLAS measurement interpretations

Lawrence Livermore National Laboratory

Next Generation Measurements?

Two-point energy correlators clearly identify the effective scales of the jet-QGP interactions determining the energy loss

Kunnawalkam Elayavalli et al.

Phys. Rev. Lett. 130, no.26, 262301 (2023)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC