Project is supported in part by DOE grant Grant No. DE-FG05-92ER40712 Paper: <u>JHEP04(2023)140</u>

2024 RHIC-AGS User Meeting, AI/ML Workshop

Machine Learning Application in Jet Quenching Analysis

Vanderbilt University

RHIC-AGS AI/ML 06/11/24

Yilun Wu

Background and Motivation Neural Network Framework (feature engineering) for the Study Design Simulation as a Realistic Approximation to Data ✓ Simulation of Thermal Background in HI Collisions and NN Training Results ✓ Simulation of Detector Effects on the NN Training Results Summary and Outlook

RHIC-AGS AI/ML 06/11/24

Outline

Jet Quenching Phenomenon

Heavy ion collision

Motivation-why study quenching jet-by-jet?

Jet-QGP interaction

Background and Motivation

Feature Engineering

RHIC-AGS AI/ML 06/11/24

What we measured

The physics of jet quenching is studied from **the difference between collision systems** of proton-proton (pp) and heavy-ion(AA) events.

Motivation-why study quenching jet-by-jet?

Jet-QGP interaction

Background and Motivation

Feature Engineering

What we measured

- The physics of jet quenching is studied from **the difference between collision systems** of proton-proton (pp) and heavy-ion(AA) events.
- In practice, we statistically average measured jet observables over
- However, jets experience various levels of quenching due to complex mechanisms. Many jets experience little quenching, thus

GEN Level Simulation

Motivation- why study quenching jet-by-jet?

Jet-QGP interaction

Background and Motivation

Feature Engineering

RHIC-AGS AI/ML 06/11/24

What we measured

Jet losses energy as a whole Internal structures of jets are modified

- The physics of jet quenching is studied from the difference between collision systems of proton-proton (pp) and heavy-ion(AA) events.
- In practice, we statistically average measured jet observables over billions of collisions to achieve significant results.
- However, jets experience various levels of quenching due to complex mechanisms. Many jets experience little quenching, thus diminishing the significance of the results.
- Train the neural network (NN) to discriminate pp jets from AA jets. The trained NN can identify jet quenching level on a jet-by-jet basis.

GEN Level Simulation

Previous Works on ML applied to Jets Quenching Study

Jet Substructures with Showering History as NN Input

Background and Motivation

Feature Engineering

RHIC-AGS AI/ML 06/11/24

GEN Level Simulation

Detector Effects Simulation

8

Jet Substructures with Showering History as NN Input

Background and Motivation

Feature Engineering

RHIC-AGS AI/ML 06/11/24

Hardest branch of the jet

Jet substructure variables are defined at the splitting points of the jet. They are sensitive to jet-induced medium response. Thus, they are good tools to study the jet energy loss in medium

GEN Level Simulation

How to do feature engineering?

Jet observable that represents the internal structure of a jet:

• Jet substructure

Input

Long Short-Term Memory Neural Network

- learning from sequential data
- Improved RNN (Recurrent Neural Network)

Before Starting Training the NN...

✓ Simulation of Thermal Background in HI Collisions and NN Training Results

In data, we need to subtract underlying event per event in heavy-ion collisions. To be as realistic as possible, we apply the same process in simulation.

JEWEL simulation for dijet events:

Non-quenched jets (vacuum class) **Quenched** jets (medium class)

Embedding the simulated event with a thermal background:

*Thermal Bkg is simulated by the PYTHIA+ANGANTYR model

0-10% Centrality

dijet hard event

mixed event

Background and Motivation

Yilun Wu

Feature Engineering

Generator Level Events for Training

+ Uncorrelated thermal background

Background subtraction algorithm: Event-wide Constituent Subtraction

We use the jets reconstructed from the bkg-subtracted events for training.

bkg-sub event

GEN Level Simulation

Detector Effects Simulation

ML Classified Quenched Jets – Jet Substructures

Background and Motivation

Feature Engineering

RHIC-AGS AI/ML 06/11/24

GEN Level Simulation

ML Classified Quenched Jets — Jet Substructures

Quenchness: The LSTM output for each medium jet. If the value is closer to 1, then the jet is more quenched. And vice versa.

Background and Motivation

Feature Engineering

RHIC-AGS AI/ML 06/11/24

GEN Level Simulation

ML Classified Quenched Jets – Jet Substructures

Quenchness: The LSTM output for each medium jet. If the value is closer to 1, then the jet is more quenched. And vice versa.

Background and Motivation

Feature Engineering

RHIC-AGS AI/ML 06/11/24

GEN Level Simulation

Other Observables for ML Classified Quenched Jets

from heavy-ion collisions based on the diverse extents they quenched to.

✓ Jet fragmentation function

Background and Motivation

Feature Engineering

Yilun Wu

RHIC-AGS AI/ML 06/11/24

- Our LSTM neural network can learn from various jet substructures, and classify jets

$$P(r) = \frac{1}{\delta r} \frac{1}{N_{\text{jet}}} \sum_{\text{jets tracks} \in [r_a, r_b]} p_T^{\text{track}},$$

Background and Motivation

Feature Engineering

Yilun Wu

RHIC-AGS AI/ML 06/11/24

GEN Level Simulation

Vice versa.

Background and Motivation

Yilun Wu

Feature Engineering

GEN Level Simulation

Detector Effects Simulation

Vice versa.

Background and Motivation

Yilun Wu

Feature Engineering

GEN Level Simulation

Detector Effects Simulation

Quenchness: The LSTM output for each medium jet. If the value is closer to 1, then the jet is more quenched. Vice versa.

Background and Motivation

Yilun Wu

Feature Engineering

GEN Level Simulation

Quenchness: The LSTM output for each medium jet. If the value is closer to 1, then the jet is more quenched. Vice versa.

Background and Motivation

Yilun Wu

Feature Engineering

GEN Level Simulation

Detector Effects Simulation

Quenchness: The LSTM output for each medium jet. If the value is closer to 1, then the jet is more quenched. Vice versa.

Background and Motivation

Yilun Wu

Feature Engineering

RHIC-AGS AI/ML 06/11/24

GEN Level Simulation

Jet Quenchness ML Results — Jet Fragmentation Function

 $\xi = \ln(1/p_{||}^{\text{track}})$: the probability of finding one hadron inside jet cone containing certain a longitudinal energy.

Large ξ values correspond to low energy particles within the jet cone, vice versa.

Background and Motivation

Yilun Wu

Jet Quenchness ML Results — Jet Fragmentation Function

Background and Motivation

Yilun Wu

24

Detector Effects on the Training

¹ https://github.com/delphes/delphes/blob/master/cards/delphes_card_CMS.tcl

Background and Motivation

Feature Engineering

Yilun Wu

RHIC-AGS AI/ML 06/11/24

Intersection of the section of th

GEN Level Simulation

Detector Effects: ROC curve and Binary Classification

Detector Effects: Jet Shape

Background and Motivation

Feature Engineering

Yilun Wu

RHIC-AGS AI/ML 06/11/24

Detector effects smear the differences between jets with different quenching levels

but the order of the modifications predicted by NN is preserved.

GEN Level Simulation

Detector Effects: Jet Fragmentation Function Ratio

Yilun Wu

Detector Effects: Jet Fragmentation Function Ratio

Yilun Wu

Detector Effects: Jet Fragmentation Function Ratio

Background and Motivation

Feature Engineering

Yilun Wu

RHIC-AGS AI/ML 06/11/24

Summary and Outlook

 \checkmark It has the potential to disentangle the complex jet quenching mechanisms.

 \checkmark It is effective under the impact of thermal background and detector effects.

✓ Other MC event generator: JETSCAPE — Savion Johnson Poster Session

Apply ML to the di-jet, photon-jet CMS data analysis (ongoing): a different method

GEN Level Simulation

Efficiency Map for DELPHES

2018 PbPb (Centrality = 10%) Track Efficiency

2017 pp Track Efficiency

Thermal Bkg(Underlying Events) Simulation

https://github.com/YilunWuVanderbilt/PYTHIA-ANGANTYR-UEGenerator/

RHIC-AGS AI/ML 06/11/24

! cmnd file
! This file contains commands to be read in for a Pythia8 run.
! Angantyr is used to simulate the underlying events in heavy-ion collisions.

! 1) Settings that will be used in a main program.
 Main:numberOfEvents = 20000 ! number of events to generate
 Main:timesAllowErrors = 3 ! abort run after this many flawed events

! 3) Beam parameter settings. Values below agree with default ones.
Beams:idA = 1000822080
Beams:idB = 1000822080
Beams:frameType = 1
Beams:eCM = 5020.
! CM energy of collision

```
! 5a) Pick processes and kinematics cuts.
HardQCD:all = on
PhaseSpace:pTHatMax = 5. ! minimum pT of hard process
PhaseSpace:bias2Selection = on
PhaseSpace:bias2SelectionPow = 4
PhaseSpace:bias2SelectionRef = 100.
```

! 6) Other settings. Can be expanded as desired.Random:setSeed = on!Random:seed = 1

! 7) Initialize the Angantyr model to fit the total and semi-includive! cross sections in Pythia within some tolerance.

Heavylon:SigFitErr = {0.02,0.02,0.1,0.05,0.05,0.0,0.1,0.0} Heavylon:SigFitDefPar = {17.24,2.15,0.33,0.0,0.0,0.0,0.0,0.0} Heavylon:SigFitNGen = 20

Thermal Bkg(Underlying Events) Simulation

PYTHIA+ANGANTYR

Centrality~0-10%

RHIC-AGS AI/ML 06/11/24

Jet Energy Scale-pp

Jet Energy Scale-PbPb

p_T **Correction:**
$$p_{T,jet} \times \sqrt{\frac{(A - B \cdot |\eta|)^2}{p_{T,jet}} + 1.0}$$
 (A = 7.0, B = 1.2)

Neural Network and Feature Engineering

```
space = hp.choice('hyper_parameters',[
    'size_batch': hp.quniform('size_batch', 2000, 10000, 1000),
    'num_epochs': hp.quniform('num_epochs', 30, 50, 5),
    'num_layers': hp.quniform('num_layers', 2, 4, 1),
    'Hidden_size 0': hp.quniform('hidden_size0', 8, 20, 2),
    'hidden_size1': hp.quniform('hidden_size1', 4, 8, 2),
    'learning_rate': hp.uniform('learning_rate', 0.01, 0.05),
    'decay_factor': hp.uniform('decay_factor', 0.9, 0.99),
    'loss_func' : hp.choice('loss_func', ['mse']),
                   Hyper parameter space
```

Stacked LSTM layers + 2 full-connect layers. Output of the last step from the top LSTM layer is directed to two full-connect layers.

Both the input and output dimensions of the first full-connect layer are the hyper-parameters defining the architecture of the neural network.

**Paper: <u>JHEP04(2023)140</u>*

Select jets from dataset to form batches: Non-quenched jets from Jewel-vacuum

Quenched jets (Medium jets) from Jewel

Mean square error (MSE) batch loss

$$L = \frac{\sum_{batch} \omega_i * (x_i - y_i)^2}{\sum_{batch} \omega_i}$$

 ω_{i} : event weight x_i : predictive label y_i : truth label

 $(\omega_i = 1 \text{ for real experimental samples})$

RHIC-AGS AI/ML 06/11/24

Training+Validation

Input dataset:		200k events	200k events
	No. of Jets	Training Set (w/wo cuts)	Validation Set (w/wo cuts
	Non-quenched jets	42535 /310332	42272 /31027
	Medium jets	52954 /298675	52967/ 29887

Example of batch loss decreasing in the training

