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How does the spin of the nucleon arise? 

What are the emergent properties of 
dense systems of gluons? 

A US-led and international effort to build the ultimate 
precision machine to study the “glue” that binds us all

3 fundamental questions

World-wide interest, thousands of users and 
hundreds of institutions already  involvedTotal estimated cost ~ $1.6-2.6B

How does the mass of the nucleon arise? 



AI/ML at the Electron Ion Collider
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● AI/ML is becoming ubiquitous in NP ● Next generation QCD experiment like EIC 
have the opportunity to integrate AI/ML from 
the initial phases of their development 

Some recommendations from the NSAC Long-Range Plan Town Hall Meeting on Hot and Cold QCD (MIT, 2022):
● The completion of the EIC is recommended as the highest priority for facility construction 
● Increased investments in computational nuclear physics, AI/ML, HPC, HTC, data systems, and interdisciplinary 

workforce development, are essential for advancing nuclear physics.

A. Boehnlein, M. Diefenthaler, CF, et al., Machine learning in nuclear physics, 
Rev. Mod. Phys. 94, 031003 (2022) 

Allaire, C., CF, et al. "Artificial Intelligence for the Electron Ion Collider (AI4EIC)." 
Computing and Software for Big Science 8.1 (2024): 5.

https://indico.mit.edu/event/538/
The Present and Future of QCD, Nucl.Phys.A 1047 (2024): 122874. 

Community perspective:

https://indico.mit.edu/event/538/


Outline
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● Multiple ongoing AI/ML activities for the EIC 

○ I will focus on the following examples:

■ AI-assisted design for EIC —> AID2E

■ Reconstruction of Deep Inelastic Scattering —> ELUQuant

■ Particle Identification —> Deep(er)RICH

■ AI-assistants for the EIC —> RAG-based  

External 
Knowledge Deep(er)RICH
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AID2E
AI-assisted

Detector Design at 
EIC



AI-Assisted Detector Design 
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Experimental design embraces all the the main steps of the simulation pipeline… 

● Benefits from rapid turnaround time 
from simulations to analysis of 
high-level reconstructed observables

● The EIC SW stack offers multiple 
features that facilitate AI-assisted 
design (e.g., modularity of simulation, 
reconstruction, analysis, easy access 
to design parameters, automated 
checks, etc.) 

● Leverages heterogeneous computing

Those at EIC can be the first large-scale experiments ever realized with the assistance of AI

Accurate simulations of the passage of particles or 
radiation through matter
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— Hot take: every optimization problem is fundamentally a multi-objective optimization problem —  

AI-Assisted Detector Design 

1. Types of Objectives 

a. Intrinsic detector performance 
(resolutions, efficiencies) for each sub-detector — 
Tracking, calorimetry, PID — noisy

b. Physics-performance
Multiple physics channels, equally important in the 
EIC physics program 

c. Costs 
(e.g., material costs, provided a reliable 
parametrization)

2. Objectives can be competing with each other 

a. E.g. Better detector response come with higher 
costs; better resolutions may imply lower 
efficiencies; etc.

detector design solutionshypervolume

For illustrative purposes

e.g., 
f1: cost for realization 

f2: resolution

Goal: Determine Pareto front (trade off solutions)

Pareto

● Examining solutions on the Pareto front of EIC detectors at different values of the budget can have great cost benefits. 
● A fractional improvement in objectives leads to more efficient beam time use, significantly reducing the lifetime costs of the EIC.



Bayesian Optimization
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● BO is a sequential strategy 
developed for global optimization.

● After gathering evaluations we 
builds a posterior distribution used 
to construct an acquisition 
function.
 

● This cheap function determines 
what is next query point. 1. Select a Sample by Optimizing the Acquisition Function.

2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.

This strategy can be generalized to multi-objective optimization to find the Pareto front 

With a single objective, for illustration
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AID2E
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(i) Will contribute to advance state of 
the art MOBO complexity to 

accommodate a large number of 
objectives and will explore usage of 

physics-inspired approaches

(ii) Development of suite of data 
science tools for interactive navigation 
of Pareto front (multi-dim design with 

multiple objectives)

(iii) Will leverage cutting-edge 
workload management systems 
capable of operating at massive 
data and handle complex 
workflows

https://ai4eicdetopt.pythonanywhere.com/

CF, Z. Papandreou, K. Suresh, et al. "AI-assisted optimization of the ECCE tracking system at the Electron Ion Collider." NIMA: 1047 (2023): 167748.  
CF "Design of detectors at the electron ion collider with artificial intelligence." JINST 17.04 (2022): C04038.
Maeno, Tadashi, et al. "PanDA: Production and Distributed Analysis System." Computing and Software for Big Science 8.1 (2024): 1-21.

AI-assisted Detector Design for EIC
AID2E  AID(2)E Coll. , arXiv:2405.16279 (2024) 

  BNL, CUA, Duke, JLab, W&M

https://ai4eicdetopt.pythonanywhere.com/
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AID2E
AI-assisted Detector Design for EIC

Complexity studies with DTLZ-2 benchmark problem

Applications for ePIC sub-detector systems

dRICH

Far-forward

 AID(2)E Coll. , arXiv:2405.16279 (2024) 

  BNL, CUA, Duke, JLab, W&M
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ELUQuant
Event-Level 

Uncertainty Quant.



Deep Inelastic Scattering

12M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", NIM-A 1025 (2022): 166164

DIS is governed by the four-momentum transfer squared of the exchanged boson Q2, the inelasticity y, and 
the Bjorken scaling variable x. 

These kinematic variables are related via the relation Q2 = sxy, where s is the square of the 
center-of-mass energy.

Born diagram

higher-order QED 
corrections at the 

lepton vertex

Initial State Radiation

Final State Radiation



Reconstruction 
Methods
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● Conservation of momentum and energy 
over constrain the DIS kinematics and 
leads to a freedom to calculate x, Q2, y 
from measured quantities 

● Each method has advantages and 
disadvantages, and no single approach is 
optimal over the entire phase space. Each 
method exhibits different sensitivity to QED 
radiative effects

● Once (real) higher-order QED effects are 
considered, the various methods yield 
different results and the calculated 
quantities for Q2, y and x are not 
representative for the γ/Z + p scattering 
process at the hadronic vertex.
  

Summary of basic reconstruction methods

M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 
NIM-A 1025 (2022): 166164



Deeply Learning DIS

14M. Diefenthaler, A. Farhat, A. Verbytskyi, Y Xu. "Deeply learning deep inelastic scattering kinematics." EPJ C 82.11 (2022): 1064.

DIS fundamental 
process @EIC

(Born level)

● Use of DNN to reconstruct the kinematic observable x, Q2, y in the study of 
neutral current DIS events at ZEUS and H1 experiments at HERA.

● The performance compared to electron, Jacquet-Blondel and the 
double-angle methods using data-sets independent of training

● Compared to the classical reconstruction methods, the DNN-based 
approach enables significant improvements in the resolution of Q2 and x

DIS beyond the Born approximation has a complicated 
structure which involve QCD and QED corrections

Example in one specific bin 



Input features of ELUQuant
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● Define variables to characterize the strength of QED radiation

*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 
NIM-A 1025 (2022): 166164

+ additional 8 features7 features to help indicate QED radiation in the event

Tot. 15 input features 

Utilized input features and H1 MC 
dataset of paper NIM-A 1025 (2022): 
166164*  



Epistemic vs Aleatoric
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● Epistemic Uncertainty 

○ Arises from a lack of knowledge which is 
reflected in the effectiveness of the model 
in describing the data. Can be reduced 
as more information or data becomes 
available, and by improving the model. It 
can be affected by inaccuracy. 

● Aleatoric Uncertainty 

○ Due to inherent variability or randomness 
in a process or system and cannot be 
reduced by collecting more data. 

Abdar, Moloud, et al. "A review of uncertainty quantification in 
deep learning: Techniques, applications and challenges." 
Information fusion 76 (2021): 243-297.



17[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
[2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).

Learn the Posterior over the weights

Access epistemic (systematic) uncertainty through sampling MNF [1] layers

Access aleatoric (statistical) as a function of regressed output [2]

Learn the regression transformation

Constrain the physics

ELUQuant
Event-Level Uncertainty 
Quantification

C. Fanelli, and J. Giroux. Machine Learning: Science and Technology 5.1 (2024): 015017.

DIS

epistemic aleatoric



Aleatoric vs RMS 
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● ELUQuant performance similar to DNN 

● Closure test on aleatoric when epistemic is negligible and distribution is gaussian
*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “NIM-A 1025 (2022): 166164 (DNN)

Each method has 
advantages and 
disadvantages, and no 
single approach is 
optimal over the entire 
phase space. Each 
method exhibits different 
sensitivity to QED 
radiative effects  



Comparison between DNN and BNN
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● (from table before) The RMS (ELUQ) roughly coincide with that of DNN as seen previously 

● The RMS (DNN) for x and y is larger at low y given the distributions are broader  

● The epistemic is systematically smaller than aleatoric component. 

● At large y, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) — 



All methods compared
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● At low y, the RMS are typically 
larger due to “broader” 
distributions  

● DNN and MNF have smaller 
RMS over the whole y range 
compared to other methods (this 
was also the finding of NIM-A 
1025 (2022): 166164) — “our 
method outperforms other 
methods over a wide kinematics 
range”

● “The RMS resolution for y and x 
increase at lower y, even for the 
DNN reconstruction. … This 
results … may be attributed to 
further acceptance, noise, or 
resolution effects that 
deteriorates the measurement of 
the HFS” 

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) — 



Epistemic vs True Inaccuracy
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1. The plots show that the epistemic uncertainty is larger when the true inaccuracy is 
larger — N.b.: at inference, we are agnostic to the true inaccuracy

2. The physics-informed term (blue) contributes to decrease the true inaccuracy.   

  

physics-informed



Leveraging event-level information
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Represented the average uncertainty 
at the event-level in this plot 

● Removing events with large relative event-level uncertainty 
(with respect to the network prediction) improve the ratio to 
truth and reduce inaccuracy. Notice these cuts do not use 
any information at the ground truth level

● We know that ELUQuant is sensitive to anomaly detection. 
Performance studies are underway.

Applying cuts on relative 
uncertainty at the event-level

● A “simple” DNN does not have per se 
uncertainty at the event level. In the plots we 
use the RMS from final distributions. We also 
compare to a weighted average.



Computing performance
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● In computational terms, ELUQuant at inference showed an impressive rate of 10,000 samples/event 
within a 20 milliseconds on an RTX 3090.
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Deep(er)RICH
Deep Reconstruction 
of Imaging CHerenkov



PID with Cherenkov
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[1] C. Fanelli, J. Pomponi, “DeepRICH: learning deeply Cherenkov detectors”, Mach. Learn.: Sci. Technol., 1.1 (2020): 015010
[2] C. Fanelli, "Machine learning for imaging Cherenkov detectors." JINST 15.02 (2020): C02012.

charged track

Cherenkov photons

DIRC at GlueX is instrumental for PID 

 (x,y,t) hit pattern

Cherenkov detectors will be the 
backbone of PID at EIC 

Photon Yield vs Track Angle 

(P∈[0,5] GeV/c)

Changing Kinematics
Changing Kinematics



PID with Cherenkov
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Fast simulations with normalizing flows

C. Fanelli, J. Giroux., J. Stevens (in progress) 

PID methods (Swin Transformer vs NF vs classical geom. reco)

Working with images

Preliminary

Preliminary

Challenges:
● Complex hit patterns (DIRC is the most complex), sparse 

data, response vs kinematics, simultaneous tracks     
● Expensive simulations for optical processes with many 

photons tracked through complex surfaces
AI/ML Solutions:   

● With DeepRICH (Mach. Learn.: Sci. Technol. 1 015010, 2020) 
we showed same reconstruction performance of best 
reconstruction algorithm with ~4 orders of magnitude 
speed-up in inference time on GPU 

● Fast simulation from generative models - Possibility to learn 
at the event-level the detector response using real data 

● Possibility to deal with overlapping hit patterns from 
simultaneously detected tracks  

Deep(er)RICH
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RAG-based 
Agent



Foundation Models
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● Foundation models are AI models trained on broad data sets, allowing for versatility across multiple applications, and have been pivotal 
in transforming AI, particularly in powering advanced chatbots and generative AI applications.

● The first examples of foundation models were pre-trained language models like Google's BERT and the "GPT-n" series of OpenAI's 

● Foundation models have been developed across a range of modalities, see, e.g., DALL-E and Flamingo for images, MusicGen for 
music, RT-2 for robotic control, etc

● Emerging interesting research activities in particle physics (see, e.g., trackingBERT talk at AI4EIC) inspired by these approaches 

See AI4EIC2023, session “Foundation Models and Trends in Data Science”

https://indico.bnl.gov/event/19560/contributions/83301/attachments/51307/87737/AI4EIC%20TrackingBert.pdf
https://indico.bnl.gov/event/19560/timetable/#20231130.detailed


RAG-based summarization AI for EIC
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“Frozen” 
LLMK. Suresh, N. Kackar, L. Schleck, CF,  arXiv preprint arXiv:2403.15729 (2024)

RAG-based EIC agent: https://rags4eic-ai4eic.streamlit.app/

~

EICUG

https://github.com/ai4eic/EIC-RAG-Project

https://indico.bnl.gov/event/19560/contributions/82240/attachments/51190/87738/A%20Summarization%20Agent%20for%20EIC-1.pdf
https://rags4eic-ai4eic.streamlit.app/
https://github.com/ai4eic/EIC-RAG-Project


RAG-based summarization AI for EIC
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“Frozen” 
LLMK. Suresh, N. Kackar, L. Schleck, CF,  arXiv preprint arXiv:2403.15729 (2024)

RAG-based EIC agent: https://rags4eic-ai4eic.streamlit.app/
https://github.com/ai4eic/EIC-RAG-Project

https://indico.bnl.gov/event/19560/contributions/82240/attachments/51190/87738/A%20Summarization%20Agent%20for%20EIC-1.pdf
https://rags4eic-ai4eic.streamlit.app/
https://github.com/ai4eic/EIC-RAG-Project


Conclusions
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● AI/ML can be integrated into nearly all aspects of data processing pipelines for NP experiments

● Next-generation QCD experiments, such as the EIC, are being conceptualized during the AI revolution, 
enabling the incorporation of AI/ML from the design and R&D phases. The EIC detectors could be the first 
large-scale detectors optimized using AI/ML.

● Hadronic physics will see increasing benefits from ML; when studying non-perturbative effects, ML 
provides a comprehensive approach by utilizing full event information and can be trained on real data.  

● Upcoming QCD experiments will harness the power of SRO and AI with heterogeneous computing:  
○ Implement near real-time analysis and control, such as intelligent and autonomous detectors. A key 

focus is the application of AI methods with well-understood uncertainty quantification, both systematic 
and statistical. 

○ Understanding uncertainties and biases in near real-time analysis with SRO could lead to a paradigm 
shift for next-generation QCD experiments, enabling faster turnaround times for producing scientific 
results.

● Foundation models have become some of the most powerful tools available today, yet their potential in our 
field remains largely untapped.
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Backup



Acquisition Functions
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Best found so far

We are sampling x 

       Utilization    Exploration

f

x

● “Exploitation”: search where μ is high 
● “Exploration”: search where σ is high



MOO
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● In the following we will refer to the multi-objective optimization based on evolutionary 
algorithms [1], and in particular pymoo [2], written in Python, which also includes 
visualization and decision making tools.  

● The definition of a generic MOO problem can be formulated as:

● M objective functions f(x) to optimize. By 
construction, pymoo performs 
minimization so a function to maximize 
needs a minus sign. 

● There can be J inequalities g(x) 

● There can be K equality constraints h(x)

● There are N variables xi with lower and 
upper boundaries. 

[1] Deb, Kalyanmoy. Multi-objective optimization using evolutionary algorithms. Vol. 16. John Wiley & Sons, 2001.
[2] Blank, Julian, and Kalyanmoy Deb. "pymoo: Multi-objective Optimization in Python." IEEE Access 8 (2020): 89497-89509
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Candidates for Optimization in ePIC
Considering all the constraints as ePIC is in the process of finalizing engineering 
designs, we can select those sub-detectors that still have tunable parameters 

dual-RICH

● Mirror, sensor 
placement, gas, 
mirror material (lower 
costs material)...  

● PID performance, 
costs, …

Far-Forward
Ongoing discussion with working groups to identify potential 

● B0 magnetic field map, distance between space 
(always considered even), central location of tracker
 

● Momentum resolution, acceptance  

 E. Cisbani et al 2020 JINST 15 P05009



Towards near real-time
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Towards near real-time
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Q2(pred)/Q2(true) vs y x(pred)/x(true) vs y y(pred)/y(true) vs y

ELUQuant/Fast UQ: Very similar 
performance at the event level, 
predictions on kinematics and 

epistemic + aleatoric uncertainties 
within ~5% on average



RAG-based summarization AI for EIC
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Methods to evaluate RAG’s performance
● RAGAS score
● LLM as Judge[1]

Methods to improve RAG architecture
● Better chunking strategies. LateX Splitter, TWikiSplitter
● Metadata based filtering.
● Response Template fine-tuning. INSTRUCT tuning
● Model fine-tuning. Computationally costly.

RAG-based EIC agent: https://rags4eic-ai4eic.streamlit.app/

https://indico.bnl.gov/event/19560/contributions/82240/attachments/51190/87738/A%20Summarization%20Agent%20for%20EIC-1.pdf
https://docs.ragas.io/en/latest/concepts/metrics/index.html
https://arxiv.org/pdf/2311.09476.pdf
https://rags4eic-ai4eic.streamlit.app/

