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I_E:I-eC-t ron Ion COlllder Sfundomentolquesti:l

How does the mass of the nucleon arise?

A US-led and international effort to build the ultimate
precision machine to study the “glue” that binds us all
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rKi/ML at the Electron Ion Collider

e Al/ML is becoming ubiquitous in NP

NUCLEAR THEORY
o Correlations and predictions i
o Estimations and causations 8

NUCLEAR DATA

o Databases DISCOVERY
e Data Mining

o Visualization

>

APPLICATIONS

NUCLEAR EXPERIMENT
‘o Methods
* Tools

ACCELERATOR SCIENCE
AND OPERATIONS

A. Boehnlein, M. Diefenthaler, CF, et al., Machine learning in nuclear physics,
Rev. Mod. Phys. 94, 031003 (2022)

Community perspective:

Next generation QCD experiment like EIC
have the opportunity to integrate Al/ML from
the initial phases of their development

Home > Computing and Software for Big Science > Article

Artificial Intelligence for the 533“_?3%‘3_3% ’
Electron lon Collider (AI4EIC) “f;@“'e"“‘

Review | Openaccess | Published: 15 February 2024

Volume 8, article number5,(2024) Cite thisarticle

Allaire, C., CF, et al. "Artificial Intelligence for the Electron lon Collider (AI4EIC)."
Computing and Software for Big Science 8.1 (2024): 5.

Some recommendations from the NSAC Long-Range Plan Town Hall Meeting on Hot and Cold QCD (MIT, 2022):
e  The completion of the EIC is recommended as the highest priority for facility construction
e Increased investments in computational nuclear physics, AI/ML, HPC, HTC, data systems, and interdisciplinary

workforce development, are essential for advancing nuclear physics.
https://indico.mit.edu/event/538/

The Present and Future of QCD, Nucl.Phys.A 1047 (2024): 122874.


https://indico.mit.edu/event/538/

rahtline

e Multiple ongoing Al/ML activities for the EIC

o | will focus on the following examples:

m Al-assisted design for EIC —> AID2E

m Reconstruction of Deep Inelastic Scattering —> ELUQuant
m Particle Identification —> Deep(er)RICH
m Al-assistants for the EIC —> RAG-based

Schematic of GlueX DIRC detector
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|_AI—Assisted Detector Design _l

Experimental design embraces all the the main steps of the simulation pipeline...

/’_5\
.,rr° N
e Benefits from rapid turnaround time
1_ | from simulations to analysis of
¢ .Jl"‘ high-level reconstructed observables
\ /

e The EIC SW stack offers multiple
Design Parameters Objectives features that facilitate Al-assisted
design (e.g., modularity of simulation,
l reconstruction, analysis, easy access
to design parameters, automated
Detector
Simulation

checks, etc.)

Reconstructed
Features

e Leverages heterogeneous computing

Accurate simulations of the passage of particles or
radiation through matter

Those at EIC can be the first large-scale experiments ever realized with the assistance of Al

ES |



|_AI—Assisted Detector Design _l

— Hot take: every optimization problem is fundamentally a multi-objective optimization problem —

1.  Types of Objectives

For illustrative purposes

a. Intrinsic detector performance
(resolutions, efficiencies) for each sub-detector — e.g.

Tracking, calorimetry, PID — noisy f,: cost for realization
f,: resolution

b. Physics-performance
Multiple physics channels, equally important in the
EIC physics program

c. Costs
(e.g., material costs, provided a reliable
parametrization)

2.  Objectives can be competing with each other

a. E.g. Better detector response come with higher Objective Space Design Space
costs; better resolutions may imply lower

efficiencies; etc. Goal: Determine Pareto front (trade off solutions)

Examining solutions on the Pareto front of EIC detectors at different values of the budget can have great cost benefits.
° A fractional improvement in objectives leads to more efficient beam time use, significantly reducing the lifetime costs of the EIC. 7




Bayesian Optimization

With a single objective, for illustration

t=4

e BO is a sequential strategy
developed for global optimization.

Posterior
Posterior

e After gathering evaluations we
builds a posterior distribution used
to construct an acquisition
function.

Acquisition function
Acquisition function

e This cheap function determines

what is next query pomt. . Select a Sample by Optimizing the Acquisition Function.

. Evaluate the Sample With the Objective Function.
. Update the Data and, in turn, the Surrogate Function.
.GoTo 1.

A WODN -~

This strategy can be generalized to multi-objective optimization to find the Pareto front




ﬁI D2 E AID(2)E Coll. , arXiv:2405.16279 (2024)

AT-assisted Detector Design for EIC

BNL, CUA, Duke, JLab, W&M

Central
database
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(i) Will contribute to advance state of

the art MOBO complexity to (iif) Will leverage cutting-edge

accommodate a large number of (i) Development of suite of data workload management systems
objectives and will explore usage of ~Sclénce tools for mte_rac_tlve nqwgat_lon capable of operating at massive
physics-inspired approaches of Pareto front (multi-dim design with data and handle complex
multiple objectives) workflows

CF, Z. Papandreou, K. Suresh, et al. "Al-assisted optimization of the ECCE tracking system at the Electron lon Collider." NIMA: 1047 (2023): 167748.
CF "Design of detectors at the electron ion collider with artificial intelligence." JINST 17.04 (2022): C04038. 9
Maeno, Tadashi, et al. "PanDA: Production and Distributed Analysis System." Computing and Software for Big Science 8.1 (2024): 1-21.



https://ai4eicdetopt.pythonanywhere.com/

ﬁI D 2 E AID(2)E Coll. , arXiv:2405.16279 (2024)

AT-assisted Detector Design for EIC

High-level Workflow BNL, CUA, Duke, JLab, W&M
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Complexity studies with DTLZ-2 benchmark problem

Applications for ePIC sub-detector systems
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|_Deep Inelastic Scattering _l

DIS is governed by the four-momentum transfer squared of the exchanged boson Q?, the inelasticity y, and
the Bjorken scaling variable x.

higher-order QED Initi
corrections at the
lepton vertex

| State Radiation

kJ

Final State Radiation

HES

Born diagram

These kinematic variables are related via the relation Q? = sxy, where s is the square of the
center-of-mass energy.

q-P
3=(k—|—P)2, Q2:_q27 y:ﬁa and x:Q2/(sy)

w
E M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning”, NIM-A 1025 (2022): 166164 1 2



rﬁéconstruction

Methods

Conservation of momentum and energy
over constrain the DIS kinematics and
leads to a freedom to calculate x, Q?, y
from measured quantities

Each method has advantages and
disadvantages, and no single approach is
optimal over the entire phase space. Each
method exhibits different sensitivity to QED
radiative effects

Once (real) higher-order QED effects are
considered, the various methods yield
different results and the calculated
quantities for Q?, y and x are not
representative for the y/Z + p scattering
process at the hadronic vertex.

Summary of basic reconstruction methods

Electron (e)
Double angle (DA) [6, 7]

Hadron (h, JB) [4]
ISigma (IX) [9]
IDA [7]

EoEY

Ey0%

6%y [8]

Double energy (A4) [7]

EXT

EoET

Sigma () [9] [Eo,E,%,0] =

eSigma (eX) [9]

Method name Observables .

[Eo,E,0]
[E0707’Y]

[Eo0,Z,7]
(E,0,%]
[E,60.]

[Eo,E %)

[Eo,0,%]
(0,2

[Eo,E,Ep]

[E,X,T]

[Eo,E,T]

[EflvaEve]

2Eg

2
tan 2

7 []
tan é+tan 7

E—Eqg
(zEp)—Eo

b3}

S+E+4\/E2+T2

2Eo—EFy/ E2-T2

2Eg

QZ
E2sin? 6
1-y

4E cot® §(1 - y)

E(1+cos )
2y

E(1+cos 6)

AEGE — AE3(1 — y)

4E3 cot® £(1 —y)
T‘.
1-y

4Eoy(zEp)

T2
1-y

T2
1—-y

2
QIE

2EoE(1 + cos 0) EQtcos A)(Z+%,)

p]

Table 1. Summary of basic reconstruction methods that employ only three out of five quantities:
Ey (electron-beam energy), E and 6 (scattered electron energy and polar angle), ¥ and v (lon-

gitudinal energy-momentum balance, ¥ = Y ypg(Ei — p-,i), and the inclusive angle of the HFS).
Alternatively, the A4 method makes use of the HFS total energy Ej. Shorthand notations are used

M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning",

NIM-A 1025 (2022): 166164

13



Deeply Learning DIS

l(];;) (Born level) l'(k?’)
DIS fundamental S —
process QEIC B W=D .
B )
) = e

DIS beyond the Born approximation has a complicated
structure which involve QCD and QED corrections

e Use of DNN to reconstruct the kinematic observable x, Q?, y in the study of
neutral current DIS events at ZEUS and H1 experiments at HERA.

e The performance compared to electron, Jacquet-Blondel and the
double-angle methods using data-sets independent of training

e Compared to the classical reconstruction methods, the DNN-based
approach enables significant improvements in the resolution of Q? and x

Example in one specific bin

®DA, Bin 2

> 5.6/ ®EL, Bin 2 ®JB, Bin 2

350530 | NN:
JB: 167

ables in b Vof z and Q?
defined as the 3 of the
and log(Q?) -

M. Diefenthaler, A. Farhat, A. Verbytskyi, Y Xu. "Deeply learning deep inelastic scattering kinematics." EPJ C 82.11 (2022): 1064.

14



I_InDUt featu reS Of ELUQlJant Utilized input features and H1 MC

dataset of paper NIM- A 1025 (2022)

e Define variables to characterize the strength of QED radiation

bal PTe % tan 3 bal Yet+ X
— T = 1.— and = 1-— .
. iy 3 tan g = 2 Ep
7 features to help indicate QED radiation in the event + additional 8 features

bal bal

e The values of p7™ and py

e Scattered-electron quantities and E.
e The energy, 7, and A¢ of the reconstructed photon in the event that is closest to the o Bl e

electron-beam direction, where A¢ is with respect to the scattered electron. e HFS four-vector quantities T, p, ; and Ej,.

e The sum ECAL energy within a cone of AR < 0.4 around the scattered electron

o A¢(e, h) between the scattered electron and the HFS momentum vector.
divided by the scattered-electron track momentum.

e The difference ¥, — X.

e The number of ECAL clusters within a cone of AR < 0.4 around the scattered
electron.

Tot. 15 input features Dataset Training Events Validation Events Testing Events  Size on Disk

HI 8.0 x.10° 1.9 x 10° 1.9 x 10° 8 GB

% *M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 1 5
NIM-A 1025 (2022): 166164



rEbistemic vs Aleatoric

e Epistemic Uncertainty

o Arises from a lack of knowledge which is
reflected in the effectiveness of the model
in describing the data. Can be reduced
as more information or data becomes
available, and by improving the model. It
can be affected by inaccuracy.

Aleatoric

e Aleatoric Uncertainty

o Due to inherent variability or randomness
in a process or system and cannot be
reduced by collecting more data.

Abdar, Moloud, et al. "A review of uncertainty quantification in
deep learning: Techniques, applications and challenges."

Information fusion 76 (2021): 243-297.

]



I E L U Q u a n -t C. Fanelli, and J. Giroux. Machine Learning: Science and Technology 5.1 (2024): 015017.

Event-Level Uncertainty
Quantification Lrot. = LReg. + YL Phys. + BLNF.

Measured Input
| t |
| m,m ‘

Learn the Posterior over the weights

= Ey(w ) =K L(a(War, ) [p(W)) + og (a1, [W) — log g(az, )
' i Access epistemic (systematic) uncertainty through sampling MNF [1] layers

Learn the regression transformation

1 i
= TZZS(( _VI“ +b ) 7{ _l()(’O'
& & [ I —_

2
]
epistemic aleatorlc

Bayes Block (256,128)

Access aleatoric (statistical) as a function of regressed output [2]

<z Q% y> < lugrr_j’_.lugrrf,,lngnﬁ > COIlStl'aiIl the thSiCS

Inferred Output

1 A S
E”'”‘“'DTSY Z log Q[-Z — (log s; + log &; + log ;)
i

[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks '] 7
[2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).




Aleatoric vs RMS

Jacquet-Blondel DA method e method Jacquet-Blondel DA method e method Jacquet-Blondel DA method e method
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Each method has
advantages and
disadvantages, and no
single approach is
optimal over the entire
phase space. Each
method exhibits different
sensitivity to QED
radiative effects
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Y Bin DA Method DNN RMS Aleatoric Y Bin e Method DNNRMS Aleatoric Y Bin DA Method DNNRMS Aleatoric

(0.5,0.8) 0.147955 0.061922  0.057942 (0.5,0.8) 0.056694  0.044052  0.041349 (0.5,0.8) 0.060537 0.031194  0.034643
0.2,0.5) 0.134833 0.075418  0.061706 (0.2,0.5)  0.055787  0.037505  0.032280 0.2,0.5) 0.082115 0.053126  0.044249
(0.1,0.2) 0.145530 0.097903  0.071238 (0.1,0.2)  0.054219  0.033230  0.029640 0.1,0.2) 0.098631 0.078143  0.061840
(0.05,0.1) 0.175290 0.132783  0.082945 (0.05,0.1) 0.053403  0.032501  0.029411 (0.05,0.1) 0.127276 0.109309  0.078276
(0.01, 0.05) 0.252723 0.184589  0.115453 (0.01,0.05) 0.053470  0.032139  0.029431 (0.01,0.05)  0.158493 0.147391  0.120546

Table 2: Aleatoric RMS Comparions -X Table 3: Aleatoric RMS Comparison - Q2 Table 4: Aleatoric RMS Comparison Y

e ELUQuant performance similar to DNN

e Closure test on aleatoric when epistemic is negligible and distribution is gaussian

*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “NIM-A 1025 (2022): 166164 (DNN)



rEbmparison between DNN and BNN

Ratio to Truth Error Comparison - x 040Ratio to Truth Error Comparison - Q2 0s0 Ratio to Truth Error Comparison - y

Aleatoric Component e Aleatoric Component
Epistemic Component

e RMS (DNN)

e Aleatoric Component ®
Epistemic Component ’ Epistemic Component

e RMS (DNN) : e RMS (DNN)

Uncertainty
Uncertainty
Uncertainty

e (from table before) The RMS (ELUQ) roughly coincide with that of DNN as seen previously
e The RMS (DNN) for x and y is larger at low y given the distributions are broader
e The epistemic is systematically smaller than aleatoric component.

At large y, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN
19

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) —




All methods compared

At low y, the RMS are typically
larger due to “broader”
distributions
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DNN and MNF have smaller
RMS over the whole y range
compared to other methods (this
was also the finding of NIM-A
1025 (2022): 166164) — “our
method outperforms other
methods over a wide kinematics
range”
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“The RMS resolution for y and x
increase at lower y, even for the
DNN reconstruction. ... This
results ... may be attributed to
further acceptance, noise, or
resolution effects that
deteriorates the measurement of
the HFS”
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— Reporting uncertainty at the level of the event (e.g., RMS from other methods) —




|_Epistemic vs True Inaccuracy _l
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1. The plots show that the epistemic uncertainty is larger when the true inaccuracy is
larger — N.b.: at inference, we are agnostic to the true inaccuracy

2. The physics-informed term (blue) contributes to decrease the true inaccuracy. I
21




Leveraging event-level information

=
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DNN
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e A“simple” DNN does not have per se °
uncertainty at the event level. In the plots we
use the RMS from final distributions. We also
compare to a weighted average.

Applying cuts on relative
uncertainty at the event-level

Removing events with large relative event-level uncertainty
(with respect to the network prediction) improve the ratio to
truth and reduce inaccuracy. Notice these cuts do not use
any information at the ground truth level

We know that ELUQuant is sensitive to anomaly detection.

Performance studies are underway.

22



performance

rEbmputing

Training Parameter
Max Epochs
Batch Size
Decay Steps
Decay Factor (v)
Physics Loss Scale («)
KL Scale (B)
Training GPU Memory
Network memory on local storage
Trainable parameters
Wall Time

Inference Parameter
Number of Samples (N)
Batch Size
Inference GPU Memory
Inference Time per Event

value
100
1024
50
0.1
1.0
0.01
~ 1GB
~ TMB
611,247
~ 1 Day

In computational terms, ELUQuant at inference showed an impressive rate of 10,000 samples/event
within a 20 milliseconds on an RTX 3090.

23
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rEiD with Cherenkov

E

steel box

|| bar box

DIRC at GlueX is instrumental for PID

Cherenkov detectors will be the
backbone of PID at EIC

(1) particle track

Photon Yield vs Track Angle

(P=[0,5) GeVic)

[1] C. Fanelli, J. Pomponi, “DeepRICH: learning deeply Cherenkov detectors”, Mach. Learn.: Sci. Technol., 1.1 (2020): 015010
[2] C. Fanelli, "Machine learning for imaging Cherenkov detectors." JINST 15.02 (2020): C02012.

25



P I D W i t h C h e r e n k O V Fast simulations wit normalizing flows Dep(er)RICH

[ Kaons

Challenges:

° Complex hit patterns (DIRC is the most complex), sparse
data, response vs kinematics, simultaneous tracks

° Expensive simulations for optical processes with many
photons tracked through complex surfaces

Al/ML Solutions:

e  With DeepRICH (Mach. Learn.: Sci. Technol. 1 015010, 2020)
we showed same reconstruction performance of best ;
reconstruction algorithm with ~4 orders of magnitude T i
spoatu n frence e on GPU =l il ;i

o Fast simulation from generative models - Possibility to learn
at the event-level the detector response using real data

o Possibility to deal with overlapping hit patterns from
simultaneously detected tracks

\\\\\\
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T

ribution True Y Distribution

Mmmg,ﬂMMmmm

m

Y (mm) Y (mm)

PID methods (Swin Transformer vs NF vs classical geom. reco)
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Working with images C. Fanelli, J. Giroux., J. Stevens (in progress) 26
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I_Foundation Models

@openal

Foundation models are Al models trained on broad data sets, allowing for versatility across multiple applications, and have been pivotal
in transforming Al, particularly in powering advanced chatbots and generative Al applications.

The first examples of foundation models were pre-trained language models like Google's BERT and the "GPT-n" series of OpenAl's

Foundation models have been developed across a range of modalities, see, e.g., DALL-E and Flamingo for images, MusicGen for
music, RT-2 for robotic control, etc

Emerging interesting research activities in particle physics (see, e.g., talk at AI4EIC) inspired by these approaches

Research. APlv ChatGPT. Safety Companys

Research

DALLE 3

DALLE 3 understands significantly more nuance and detail
than our previous systems, allowing you to easily translate
your ideas into exceptionally accurate images.

S ATIAS
WA
2 EXPERIMENT
hitp://atlas.ch
.Meta MusicGen Al

See AI4EIC2023, session “ "


https://indico.bnl.gov/event/19560/contributions/83301/attachments/51307/87737/AI4EIC%20TrackingBert.pdf
https://indico.bnl.gov/event/19560/timetable/#20231130.detailed

RAG-based summarization Al for EIC

K. Suresh, N. Kackar, L. Schleck, CF, arXiv preprint arXiv:2403.15729 (2024)

Frozen LLM -l ePlé;

[f‘ " \ .
External JetferZon Lab ke 0 E T
Knowledge '

RAG-based EIC agent: https://ragsdeic-aideic.streamlit.app/
https://qgithub.com/ai4eic/EIC-RAG-Project



https://indico.bnl.gov/event/19560/contributions/82240/attachments/51190/87738/A%20Summarization%20Agent%20for%20EIC-1.pdf
https://rags4eic-ai4eic.streamlit.app/
https://github.com/ai4eic/EIC-RAG-Project

RAG-based summarization Al for EIC

K. Suresh, N. Kackar, L. Schleck, CF, arXiv preprint arXiv:2403.15729 (2024)

Chunking | 'm-
VectorDB

SN

Ao o

User prompt —,
PromiD g Response e E

Template RAG based

L1 ChatGPT3.5 summary

' Embedding | INSTRUCT Report

Add T/ml\
Model [\Icta Data — Seed

{x} » Vector DB 7
% Pinecone

RAG-based EIC agent: https://ragsdeic-aideic.streamlit.app/
https://qgithub.com/ai4eic/EIC-RAG-Project



https://indico.bnl.gov/event/19560/contributions/82240/attachments/51190/87738/A%20Summarization%20Agent%20for%20EIC-1.pdf
https://rags4eic-ai4eic.streamlit.app/
https://github.com/ai4eic/EIC-RAG-Project

|_Conclusions _l

e Al/ML can be integrated into nearly all aspects of data processing pipelines for NP experiments

e Next-generation QCD experiments, such as the EIC, are being conceptualized during the Al revolution,
enabling the incorporation of Al/ML from the design and R&D phases. The EIC detectors could be the first
large-scale detectors optimized using Al/ML.

e Hadronic physics will see increasing benefits from ML; when studying non-perturbative effects, ML
provides a comprehensive approach by utilizing full event information and can be trained on real data.

e Upcoming QCD experiments will harness the power of SRO and Al with heterogeneous computing:

o Implement near real-time analysis and control, such as intelligent and autonomous detectors. A key
focus is the application of Al methods with well-understood uncertainty quantification, both systematic
and statistical.

o Understanding uncertainties and biases in near real-time analysis with SRO could lead to a paradigm
shift for next-generation QCD experiments, enabling faster turnaround times for producing scientific
results.

e Foundation models have become some of the most powerful tools available today, yet their potential in our

field remains largely untapped.
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e In the following we will refer to the multi-objective optimization based on evolutionary
algorithms [1], and in particular pymoo [2], written in Python, which also includes
visualization and decision making tools.

e The definition of a generic MOO problem can be formulated as:

e M objective functions f(x) to optimize. By
min fm(x) m = 1, ..,M, cqng,tryctlpn, pymoo peﬁorms .

minimization so a function to maximize
needs a minus sign.

s.t.  g;(x) <0, =1,
e There can be J inequalities g(x)
hk(x) == 0’ k= 1’ “9 K’ e There can be K equality constraints h(x)
L U = e There are N variables x. with lower and
X <Xx; < X = I,..,N. upper boundaries.

ol

S [1] Deb, Kalyanmoy. Multi-objective optimization using evolutionary algorithms. Vol. 16. John Wiley & Sons, 2001.
ﬁ [2] Blank, Julian, and Kalyanmoy Deb. "pymoo: Multi-objective Optimization in Python." IEEE Access 8 (2020): 89497-89509 34




|_Candidates for Optimization in ePIC _l

Considering all the constraints as ePIC is in the process of finalizing engineering
designs, we can select those sub-detectors that still have tunable parameters

e B0 magnetic field map, distance between space
(always considered even), central location of tracker

’ 1 e  Momentum resolution, acceptance

ﬁd . e Mirror, sensor

placement, gas,
mirror material (lower

n. costs material)... / P
| &
\ e PID performance, ’
yw COS tS, . BOpf combined function magnet
dual-RICH Far-Forward

=2

Ongoing discussion with working groups to identify potential 35 I



Towards near real-time

Comparison
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Towards near real-time

Q?%(pred)/Q?3(true) vs y
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ELUQuant/Fast UQ: Very similar
performance at the event level,
predictions on kinematics and
epistemic + aleatoric uncertainties
within ~5% on average




RAG-based summarization Al for EIC

Methods to evaluate RAG’s performance
° RAGAS score
e LLM as Judge®!

1. Faithfulness —

|Number of claims that can be inferred from given context|
|Total number of claims in the generated answer|

Faithfulness score =

2. Answer relevance —
|#claims correctly responded|

Answer relevance = T
|#claims in given text|

3. Context relevance —

|# relevant unique refs|

Context relevance = :
|# refs retrieved|

Methods to improve RAG architecture
Better chunking strategies. LateX Splitter, TWikiSplitter

. Metadata based filtering.
° Response Template fine-tuning. INSTRUCT tuning
. Model fine-tuning. Computationally costly.

Question 3: What is the pixel size and expected momentum
resolution at 2GeV from a MAPS ITS3 tracking layer

Iteration 1
" Answer Context
o The pixel size of the MAPS ITS3 tracking layer is 10 $\mu$m Faithfulness relevance relevance
<ARXIV_ID> http://arxiv.org/abs/2108.08314v1 </ARXIV_ID>
<ARXIV_ID> hitp://arxiv.org/abs/2203.07626v2 </ARXIV_ID> 100% 50% 70%
<ARXIV_ID> http://arviv.ora/abs/2302.01447v1 </ARXIV_ID> ° ° °

<ARXIV_ID> hitpy//andiv.org/abs/2305.15593v1 </ARXIV_ID>
<ARXIV_ID>http://arxiv.org/abs/2210.08609v2</ARXIV_ID>

« The expected momentum resolution at 2 GeV from a MAPS ITS3 tracking layer is 2.5% to 15% of the initial
momentum <ARXIV_ID> hitp://aniv.org/abs/2305.15593v1 </ARXIV_ID>
<ARXIV_ID> hitpy//andiv.ora/abs/2210.08609v2</ARXIV_ID>

Question 3: What are the dimensions of MAPS
detector used in EIC?

Response

¢ The MAPS detector used in the EIC has dimensions ranging from 3.67 cm to 43 cm, with a
sensor size of 10x10 cm <ARXIV_ID>['http://arxiv.org/abs/2203.07626v2",
*http://arxiv.org/abs/2302.01447v1’, *http://arxiv.org/abs/2210.04879v2",
*http://arxiv.org/abs/2305.02079v2", 'http://arxiv.org/abs/2302.01447v1']

 The ePIC MAPS electron endcap detector has a geometry parameter listed, and the ePIC
MAPS hadron endcap detector also has geometry parameters listed <ARXIV_ID>
[http://arxiv.org/abs/2203.07626v2", *http://arxiv.org/abs/2305.15593v 1",
*http://arxiv.org/abs/2305.15593v 1", *http://arxiv.org/abs/2305.15593v 1",
*htto://arxiv.ora/abs/2305.15593v11

#of ithful Answer Context Answer
Hallucination F ess | 1 cor
3/50 26% 62% 100% Qualitative

RAG-based EIC agent: https://ragsdeic-aideic.streamlit.app/
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