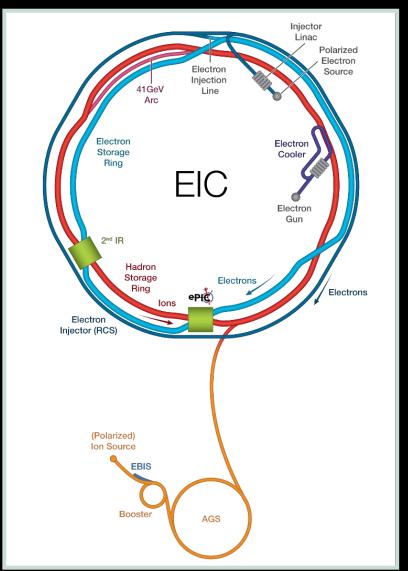


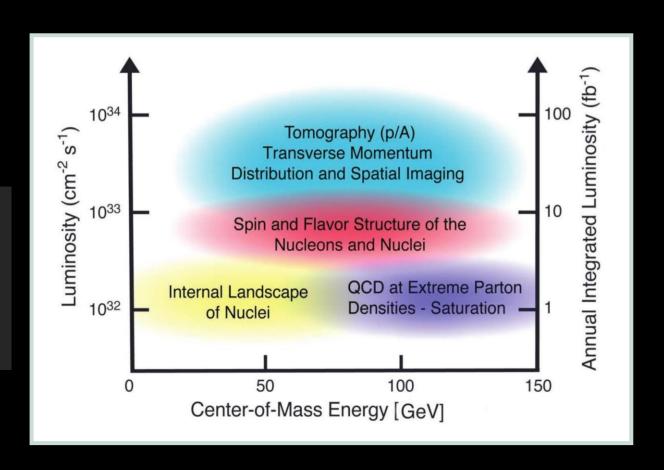
Introduction | The EIC


- The Electron-Ion Collider (EIC): next generation collider to be jointly hosted by BNL & JLab
 - Dedicated to studying the internal structure of nuclear matter
 - Will be built at BNL:
 - Add electron accelerator, storage rings alongside existing RHIC hadron ring
 - **♡** Will begin collisions in early 2030s

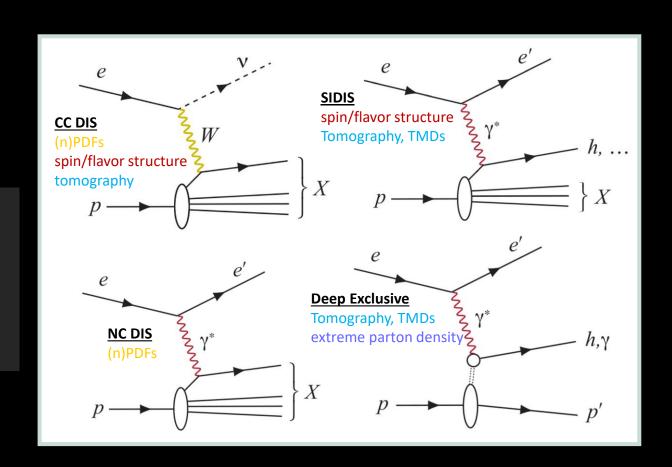
A few details:

- $-e^-$ energies = 5-18 GeV
- Ion energies = 40 275 GeV

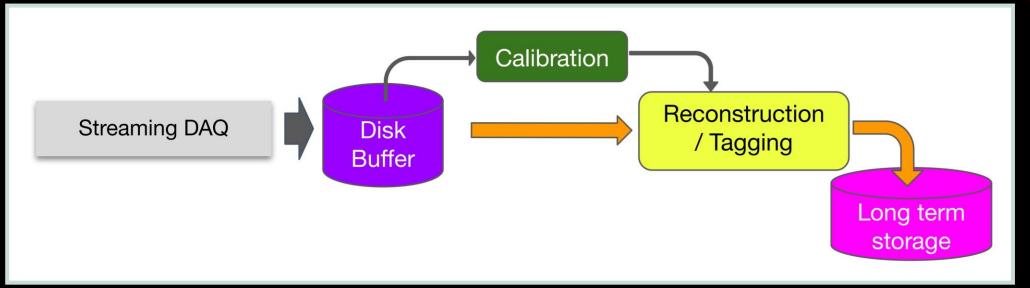
$$\Rightarrow \sqrt{s} = 29 - 141 \text{ GeV/u}$$


- lons species from proton Uranium
 - ✓ Up to 70% polarization for light ions(p He)

Introduction | EIC Goals and Luminosities


- Right: major topics to be explored at EIC vs. required luminosities & CoM energy
 - Anticipates $\mathcal{L}_{peak} \sim 10^{34}$ (cm 2 s) $^{\text{-}1}$
 - Translates to roughly 1.5 fb⁻¹ per month
 - $^{\sim}$ **Assuming**: 60% operation time & $\overline{\mathcal{L}} = \mathcal{L}_{actual}$
- o **But:** typical $\sigma_{\rm int}$ is $\mathcal{O}(100) \times$ smaller than comparable $\sigma_{\rm int}$ at RHIC/LHC...
 - And there is wide variety of processes to record...
 - ⇒ Streaming Readout (SRO) is a must if we want to fully unlock EIC scientific potential
- For reference
 - \rightarrow RHIC: $\overline{\mathcal{L}}_{pp} \sim 2.45 \times 10^{34} \, (\text{cm}^2 \, \text{s})^{-1}$
 - \rightarrow LHC: $\overline{\mathcal{L}}_{pp}\sim 1\times 10^{34}~(\text{cm}^2~\text{s})^{-1}$

Introduction | EIC Goals and Luminosities


- Right: major topics to be explored at EIC vs. required luminosities & CoM energy
 - Anticipates $\mathcal{L}_{peak} \sim 10^{34}$ (cm 2 s) $^{-1}$
 - Translates to roughly 1.5 fb⁻¹ per month
 - $^{\frown}$ **Assuming**: 60% operation time & $\overline{\mathcal{L}} = \mathcal{L}_{actual}$
- o **But:** typical $\sigma_{\rm int}$ is $\mathcal{O}(100) \times$ smaller than comparable $\sigma_{\rm int}$ at RHIC/LHC...
 - And there is wide variety of processes to record...
 - ⇒ Streaming Readout (SRO) is a must if we want to fully unlock EIC scientific potential
- For reference
 - \rightarrow RHIC: $\overline{\mathcal{L}}_{pp} \sim 2.45 \times 10^{34} \, (\text{cm}^2 \, \text{s})^{-1}$
 - \rightarrow LHC: $\overline{\mathcal{L}}_{pp}\sim 1\times 10^{34}~(\text{cm}^2~\text{s})^{-1}$

Introduction | Streaming Readout

From arXiv:2202.03085

- Streaming readout (SRO): data read out in continuous parallel streams
 - Each stream encodes when/where data was recorded
 - Data digitized at fixed rate & thresholds/zerosuppression applied locally
 - Event building, filtering, monitoring, etc. deferred until data in tiered storage
 - See: report on ePIC Streaming Computing Model

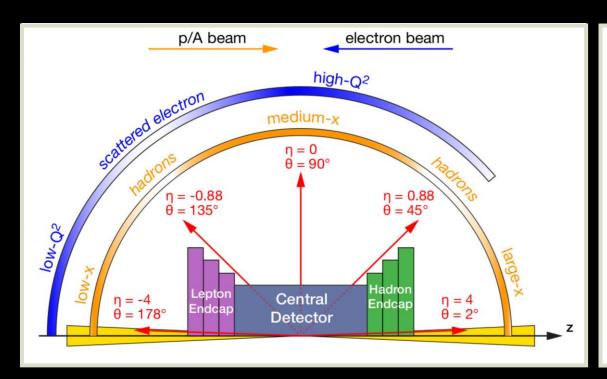
Current & Future Examples:

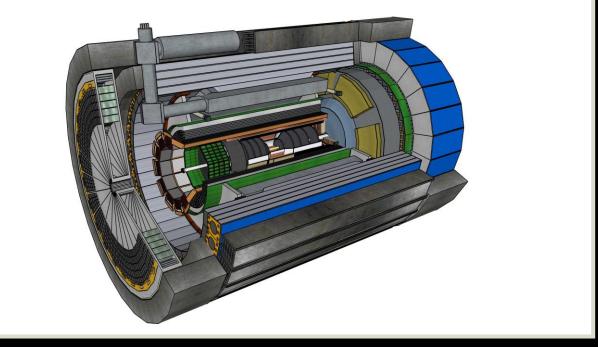
- LHCb
- Recent testimplementationat JLab
- CLAS12

- sPHENIX: FastML
 Triggering in
 sPHENIX, Cameron
 Dean [Tuesday,
 11:30 AM]
- And ePIC!

Introduction | SRO Advantages & Fast Calibration

- Several advantages of SRO over traditional readout (RO)!
 - a) Enables simplified & more flexible RO hardware
 - No custom trigger hardware/firmware!
 - b) Provides access to detailed knowledge of background
 - c) Allows workflows to be streamlined & utilize new technologies
 e.g. Al/ML!
- See: arXiv:2202.03085 & ePIC Streaming Computing Model report


In this talk: we'll discuss initial, ongoing studies using ML to calibrate the ePIC BHCal


Building on (c):

- \circ Typically $\mathcal{O}(1)$ year between recording data & analyzing data
 - Due to complexity of HEP/NP experiments
 - Alignment, calibration, reconstruction, & validation are costly!
- Our goal for ePIC: 2 3 weeks between recording
 & analyzing data!
 - Timeline driven by calibration
- Can be accomplished by integrating computing
 & detector, esp. using AI/ML for:
 - Autonomous alignment/calibration
 - And rapid reconstruction + validation

ePIC | The ePIC Detector

- ePIC: EIC project detector to be built at IP6 (6 o' clock)
 - Fulfills EIC science mission & detector requirements
 - > c.f. <u>Yellow</u> & <u>NAS</u> Reports
 - Collaboration formed in late 2022 early 2023

- o (Almost) fully hermetic central detector
 - + Extensive coverage in forward, backward
- See: ePIC: Status & Plans, Zhoudunming Tu [Friday, 11 AM]

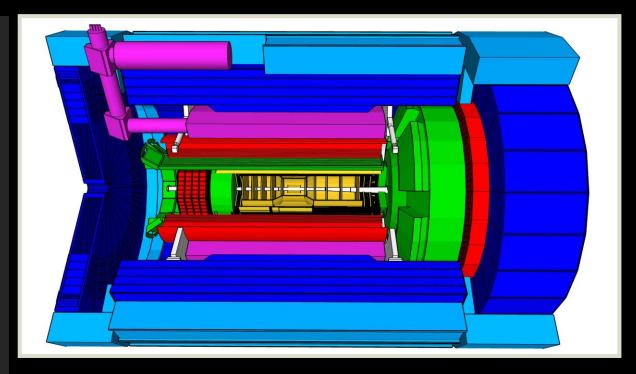
ePIC | Detector Technologies

Subsystems:

Tracking

- > Inner layers: MAPS detectors
- \rightarrow **Outer layers:** MPGDs (μ RWELL, MMS)

Particle ID


- > **Barrel:** high-performance DIRC
- > Forward: dual-radiator RICH
- > **Backward:** proximity-focusing RICH
- TOF (using AC-LGADs)

EM Calorimetry

- > Barrel: Imaging (Si + Pb/SciFi* matrix)
- > **Forward:** W-powder + SciFi*
- > Backward: PbWO4 crystals

Hadronic calorimetry

- Barrel: Fe + scintillating tiles
- Endcaps: Fe/W + scintillating tiles

- Note: far-forward & backward detectors not shown
 - ☐ Full detector extends 90 m!
- * Scintillating-fibers

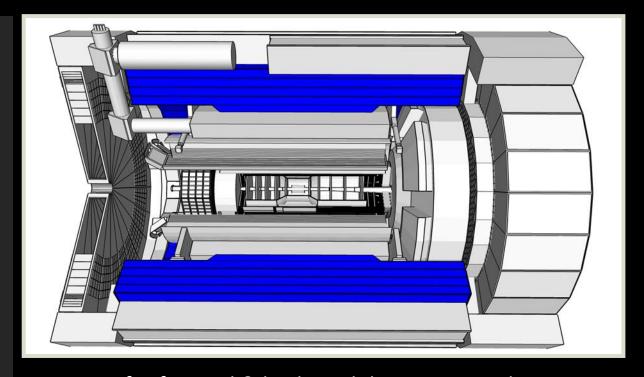
ePIC | Detector Technologies

Subsystems:

Tracking

- > Inner layers: MAPS detectors
- \rightarrow **Outer layers:** MPGDs (μ RWELL, MMS)

Particle ID


- > **Barrel:** high-performance DIRC
- > Forward: dual-radiator RICH
- > **Backward:** proximity-focusing RICH
- TOF (using AC-LGADs)

EM Calorimetry

- > Barrel: Imaging (Si + Pb/SciFi* matrix)
- > **Forward:** W-powder + SciFi*
- > Backward: PbWO4 crystals

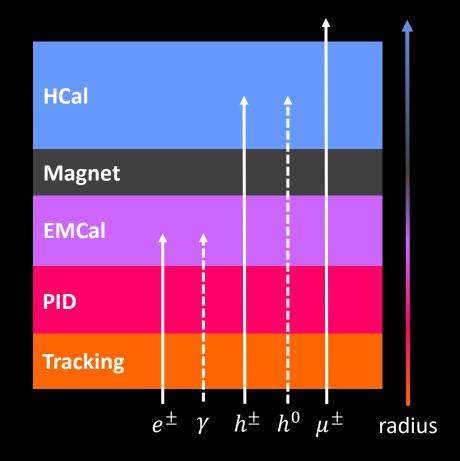
Hadronic calorimetry

- Barrel: Fe + scintillating tiles
- Endcaps: Fe/W + scintillating tiles

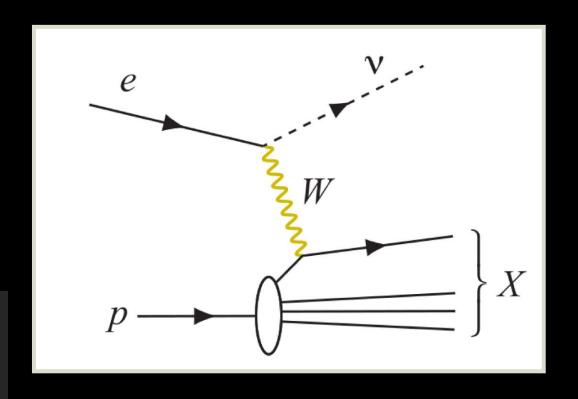


- Note: far-forward & backward detectors not shown
 - ☐ Full detector extends 90 m!
- * Scintillating-fibers

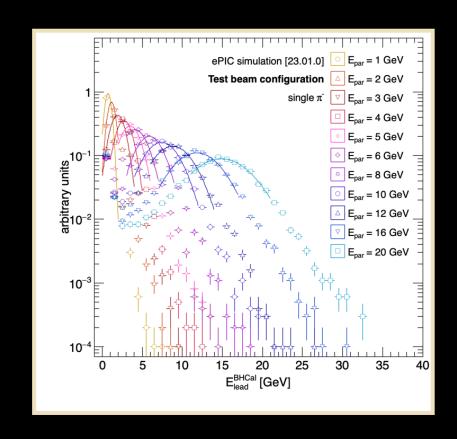
ePIC | The ePIC BHCal

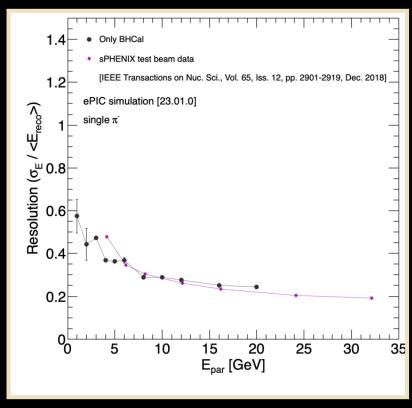

- ePIC plans to reuse outer sPHENIX
 Barrel Hadronic Calorimeter (BHCal)
 - Consists of alternating Fe and scintillating tile (+ WLS fibers)
- Technical details:
 - |η| < 1.1, 2π coverage
 - 48 towers/sector, 32 sectors,5 tiles/tower
 - $\rightarrow \Delta \eta \times \Delta \varphi \sim 0.1 \times 0.1$
 - Depth is $\sim 3.5\lambda$
- sPHENIX reads each tower while ePIC plans to read out each tile
 - **☞** Improves granularity!

ePIC | BHCal Utility

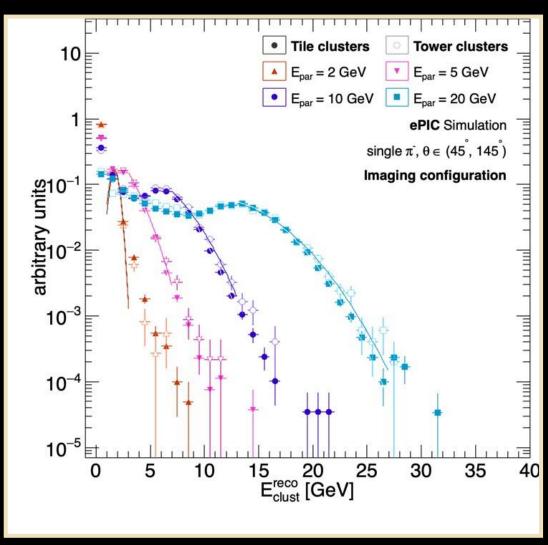

- o In barrel region ($|\eta| < 1$), jets are relatively soft
 - Tracker provides best momentum determination
 - But hadronic calorimeter would provide measurement of h^0
- : The BHCal will serve several roles at ePIC
 - a) Precise jet energy reconstruction
 - b) Additional determination of e^- kinematics
 - c) Solenoid flux return
 - d) Possible μ^{\pm} identification
- Right: schematic diagram of a typical HEP/HENP experiment vs. radius

ePIC | BHCal Utility




- \circ In barrel region ($|\eta| < 1$), jets are relatively soft
 - Tracker provides best momentum determination
 - But hadronic calorimeter would provide measurement of h^0
- : The BHCal will serve several roles at ePIC
 - a) Precise jet energy reconstruction
 - b) Additional determination of e^- kinematics
 - c) Solenoid flux return
 - d) Possible μ^{\pm} identification
- Right: feynman diagram for charged-current DIS
 - Kinematics determined via Jacquet-Blondel method
 - i.e. From all FS hadrons

Calibration | Energy in a Standalone BHCal


- sPHENIX oHCal has been implemented in simulation of ePIC
 - Left: reconstructed energies in BHCal for single π^-

- Right: calculated resolutions from ePIC simulation (black circles) vs. sPHENIX test beam data (purple stars)

Calibration | BHCal Energy with the Full Detector

- Energy measured by BHCal degraded for several reasons
 - a) Inefficiencies in clustering
 - b) Fluctuations in hadronic and EM parts of shower
 - c) Energy loss in inactive material
 - d) Loss due to nuclear-binding energies
 - e) Etc.
- Measured energy of particle has to be calibrated using info from other systems
- \circ **Right:** energy of leading BHCal cluster for single π^- events with full ePIC simulation

Calibration | A Potential Algorithm

Start at EM Scale:

- EM part of shower corrected for
 - > i.e. Sampling fraction applied
- But things like nuclear binding energy still need to be corrected for...

Typical non-ML approach:

- Total hadron energy set to weighted sum of energy measurements in
 - > EMCal
 - > HCal
 - > (& tracker, etc.)
- 2) Weights then determined by fitting to known reference
 - > e.g. particle energy in simulations
- c.f. sPHENIX's approach
 - > arXiv:1704.01461

Initial Reconstruction Input Correct for f_{samp} Single particles DIS events 1st pass at clustering etc. Regression* Reclustering* Regression on Split charged/ EMCal, HCal, etc. neutral clusters info Merge split clusters Target: part. energy **Notes:** Reco. Where ML is/could be involved **Particle**

Energies!

Dashed line = being

implemented

Calibration | A Potential Algorithm

- Start at EM Scale:
 - EM part of shower corrected for
 - > i.e. Sampling fraction applied
 - But things like nuclear binding energy still need to be corrected for...
- O ML approach: functionally the same!
 - Compute set of weights on info from different subsystems to get total energy
 - But offers a computationally efficient (& scalable) method to get weights
 - e.g. <u>2020 ATLAS study</u>
- Used TMVA for this study: trained on single particle events
 - **Training variables:** info from leading BECal, BHCal clusters (E, η , φ , etc.)
 - Target: particle energy

<u>Input</u>

Single particles DIS events etc.

Regression*

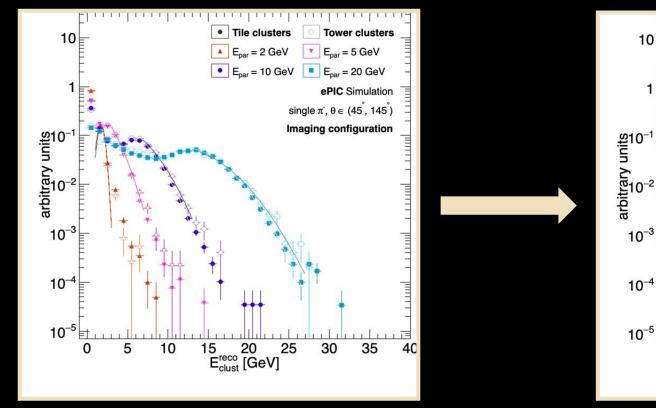
- Regression on EMCal, HCal, etc. info
- Target: part. energy

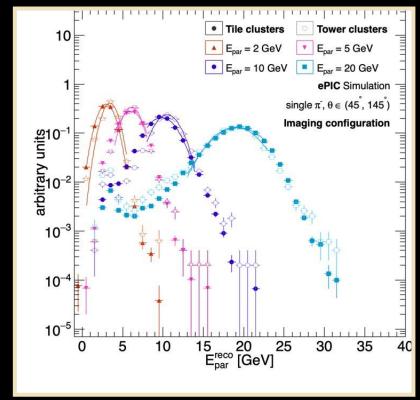
Reco.
Particle
Energies!

Initial Reconstruction

- Correct for f_{samp}
- 1st pass at clustering

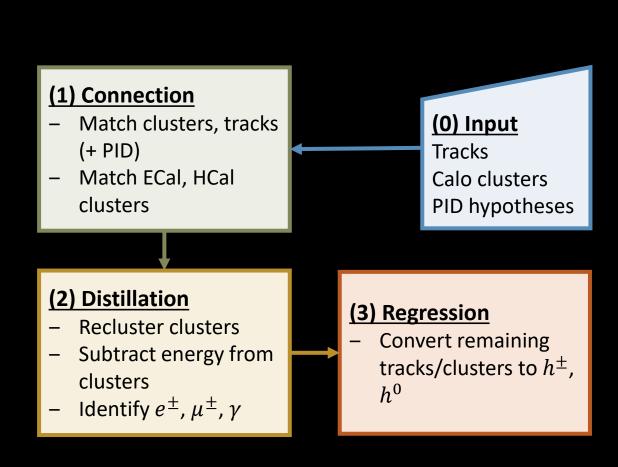
Reclustering*


- Split charged/ neutral clusters
- Merge split clusters


Notes:

- Where ML is/could be involved
- Dashed line = being implemented

Calibration | Results of TMVA Model



- Left: uncalibrated energy of lead BHCal clusters in single π^- events
 Right: calibrated energy
 - i.e. particle energy in this scenario
- Expected distributions roughly recovered!
 - Calibrated energies still show significant tails, though
 - One source could be (unwanted) cluster splitting?

Next Steps | Deployment in a PFA

ePIC

- Right illustrates a general particle flow algorithm (PFA)
 - Currently working towards prototype implementation of a rules-based PFA in EICrecon
 - Aiming for modularity in its implementation
- Workflow proposed on slides 15, 16 only integrates ML in reclustering + regression step
 - So model could be deployed in select steps of PFA, e.g. (3)
- But what about using ML for the entire PFA?
 - e.g. see proposals in
 - > EPJC **81**, 381 (2021)
 - > JP:CS **2438**, 012100 (2023)
 - Approach could be explored in parallel with rules-based implementation

Next Steps | Progress Since Al4EIC

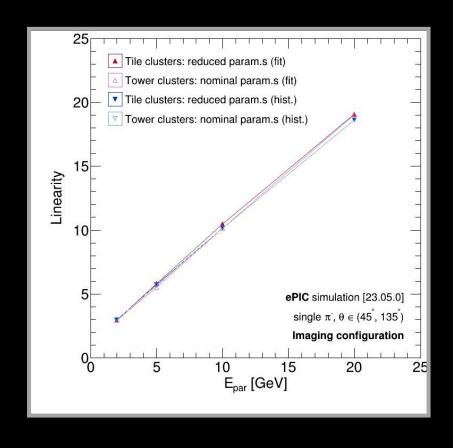
- Critical "behind-the-scenes" development necessary for EIC TDR is ongoing
 - Development of overall calibration workflow paused
 - ⇒ But significant improvements to EIC software stack made!
- Some noteworthy developments include:
 - Integration of ORT enables easy deployment of ML algorithms
 - Some already integrated into reconstruction!
 - Initial rules-based reclustering close to being integrated
 - ML methods anticipated to follow not long after

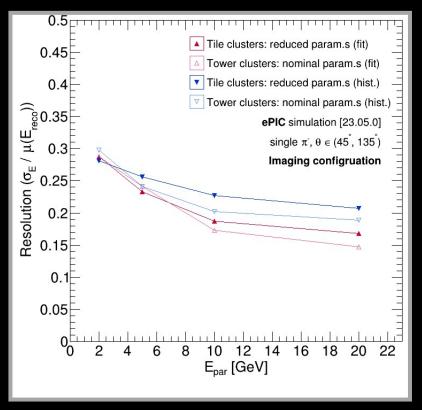
Initial Reconstruction Input Correct for f_{samp} Single particles DIS events 1st pass at clustering etc. Regression* Reclustering* Regression on Split charged/ EMCal, HCal, etc. neutral clusters info Merge split clusters Target: part. energy Notes: Reco. Where ML is/could be involved **Particle** Dashed line = being **Energies!** implemented

Next Steps | Conclusion & Outlook

Conclusions

- BHCal will be crucial for scientific program at ePIC & EIC
 - But need to calibrate to achieve full scientific potential
 - ML allows for flexible, efficient calibration algorithm suited for SRO
- Taken initial steps towards implementation of a suitable calibration algorithm for SRO
 - Current model works for single pions
 - Needs significant tuning & expansion to work in realistic SRO environment


Outlook


- Still very early in development of algorithm
 - Crucial behind-the-scenes work ongoing to lay groundwork for both ML and rulesbased methods
 - Anticipate significant progress latter half of this year in preparation for EIC TDR
- Integration of streaming computing model in EIC software will provide excellent ground for development & testing!

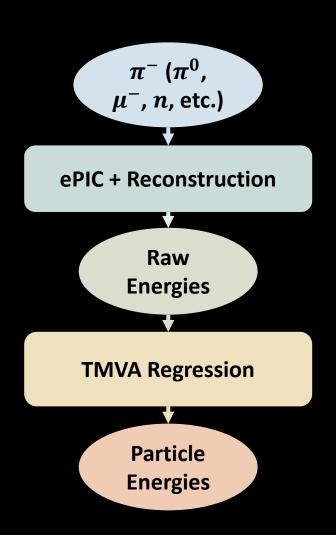
Backup | Linearity & Resolution of Reconstructed Energy

Backup | TMVA Parameters

Parameters

- Ŗêġsêşşîộŋ ắŋắľỳşîş
- Ţsắîŋẹd ộŋ êwêŋʧş , nêʧḥộđṣ ắľľ ộụʧ ộǧ ʧḥê čộy ă Lîŋêắs Dîşçsîņîŋắŋʧ şḥộxŋ č ŇĽR nêusắť nétyxosí Bộộṣʧêđ Dêçîşîộŋ Ţsêê

Training Variables


- Éŋệsĝỳ ộǧ l'êắđîŋĝ BHCắl ắŋđ BÉNC çluṣţfêsş
- Éʧa rhi ộg lêắđing BHCắl ắnđ BÉNC çlustes Nộ ộg hifs în leắd BHCắl ắnđ BÉNC çlustess
- Şun ộğ ênêsgỳ în înắgîng ắnđ ŞçîGî lắyêsş

Target

řắstfîç'lê êŋêsĝỳ

Backup | Current Calibration Workflow

Simulate single particles

- $-\pi^{-}$ (tbd: π^{0} , n, e^{-} , γ)
- 2 20 GeV
- Mid-rapidity
- Uniform in $cos(\theta)$

Cluster via ElCrecon

- Select lead BHCal and BECal clusters
- Collect training variables into NTuple

Apply TMVA

Regression target:particle energy

Reconstructed Particle Energies!

Train TMVA

- Regression analysis on particle energy
- LD, MLP, and BDT methods