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• Bayesian Optimization Applications:
o LEReC cooling rate optimization;

o Calibration of IPM monitor;

o Booster injection optimization;

o Xopt overview;

• Reinforcement Learning Applications
o AGS bunch merging;

o CERN Proton Synchrotron (PS) bunch splitting;

o Advantage & Limitations;

• Natural Language Processing:
o Enhancing Electronic Logbooks;

o Controls Interface for a Virtual Assistant;

• Anomaly Detection

• Future Projects: Polarization Optimization
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Bayesian Optimization (BO)

• The goal of BO is to optimize the objective 

function in the least number of steps; expensive 

samples;

• Name comes from the famous “Bayes’ theorem”:

• Surrogate model, gaussian process, acquisition 

function;

Expensive 

function

Surrogate 

model

Acquisition function 

sampling
Update

Output
Criterion met? • The acquisition is high where the 

GP predicts a high objective 

(exploitation) and where the 

prediction uncertainty is high 

(exploration).



Optimize LEReC cooling rate
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correctors

BPMs
• By steering the electrons in the center 

position, the ion’s cooling rate can be 

maximized;

• High noise level in the objective;

• In this initial experiment, BO is used to 

tune electron positions as measured by 

BPMs; 40 initial samples; converge in 10 

steps;

Low Energy RHIC 

electron Cooling 

System



Calibration of IPM Monitor
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𝑦𝑚𝑒𝑎𝑠,𝑖 = 𝑦𝑟𝑒𝑎𝑙,𝑖  ∗  𝑔𝑐𝑎𝑙,𝑖 𝑔𝑒𝑟𝑟,𝑖 𝐹 𝜏𝑥𝑓𝑟_𝑑𝑒𝑙𝑎𝑦, 𝜏𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑖 +  𝜎𝑜𝑓𝑓𝑠𝑒𝑡,𝑖 + 𝜀𝑛𝑜𝑖𝑠𝑒,𝑖

IPM Signal Error Model

• Ionization Profile Monitor (IPM) measures transverse profile of the beam:

o Circulating beam ionizes residual gas in the beampipe;

o An electric field forces electrons onto a microchannel plate (MCP);

o Forms a projection of the beam profile;

• Beam width measurement depends on position because of systematic 

errors in channel gains:

o Initial channel-to-channel gain variation;

o Depletion of channel gains due to aging; 

o Time response of the channel to beam signals;

o Usually addressed with position scans and offline calibrations;

𝑦𝑚𝑒𝑎𝑠,𝑖 = ‘as measured’ counts for channel i

𝑦𝑟𝑒𝑎𝑙,𝑖 = ground truth signal for channel i

𝑔𝑐𝑎𝑙,𝑖 = user supplied calibration correction for channel i

𝑔𝑒𝑟𝑟,𝑖 = error in the gain (unknown a priori) for channel i

𝐹 𝜏𝑥𝑓𝑟_𝑑𝑒𝑙𝑎𝑦 , 𝜏𝑐ℎ𝑎𝑛𝑛𝑒𝑙,𝑖  = time response of the channel to beam signal

𝜎𝑜𝑓𝑓𝑠𝑒𝑡,𝑖 = offset error for channel i

𝜀𝑛𝑜𝑖𝑠𝑒 = normally distributed noise, same sigma for all channels, sampled for each measurement



BO Error Corrections
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• Parallelized optimization; Monte-Carlo (MC) q-EI acquisition function;

• The algorithm can correct systematic errors efficiently;

K=1

K=2



Booster Injection 
Optimization*

* wl674@cornell.edu

From Linac

126° 
bend

• Booster injection/early acceleration process sets 

maximum beam brightness for rest of acceleration 

though RHIC;

• Linac pulse of 300 us, H- beam ~6-9x1011 protons, strip 

through a carbon foil;

• Intentional horizontal and vertical scraping reduce 

emittance (and intensity) to RHIC requirements;

• Goal: minimize beam loss at scraper / maximize beam 

intensity after scraping

• Controls: Linac to Booster (LtB) transfer line optics 

• Method: Bayesian Optimization (BO)

Intensity

Main mag
scrape



Booster Injection Optimization
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• Controls:

o 4 correctors; 7pm – 9pm;

o 2 correctors + 2 quadrupoles; 

7pm – 9pm;

• Goal: Maximize beam intensity

• Xopt, Trust Region BO;

• 4 correctors case converges with 120 

samples (20-25 min);

4 correctors

2 correctors + 2 quadrupoles



Horizontal and Vertical
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• Controls:

o 2 H correctors + 2 H quads; 

9:30am – 10am;

o 2 V correctors + 2 V quads; 

12:30pm – 1pm;

• Goals: Maximize Booster late intensity / 

input intensity

• Degeneracy problem: objective value 

converges but input values don’t;



Xopt Overview
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https://christophermayes.github.io/Xopt/ 

Accelerator simulation

Online Control R&D 

YAML file

Experiment facility

Text input

Xopt implements a number of 

different algorithms:

• Various Bayesian optimizations:
o Single/Multi-objective BO, Trust 

Region BO, Bayesian Algorithm 

Execution, custom model priors, 

etc.

• Genetic optimization (CNSGA), 

RCDS, Nelder-Mead Simplex, 

Extremum seeking;

https://christophermayes.github.io/Xopt/
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Problems involving an agent interacting with an 

environment, which provides numeric rewards

Goal: Learn how to take actions in order to maximize 

reward

Markov property: Current state completely 

characterizes the state of the world

Atari Games

Robot 

Locomotion

Go

Reinforcement Learning
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Designing a good reward function 

can be hard

• Recall that the reward function is the only incentive for 

the agent to learn;

• Designing a reward function is sometimes 

straightforward, but can get hard:
o Complicate objectives;

o Sparse or delayed rewards;

• Several ways to improve the reward function:
o Learning from demonstrations:

▪ Learn the policy directly (imitation learning)

▪ Learn the reward function first, then learn the policy 

(IRL)

o Incorporate human feedback (in an interactive manner);

o Curriculum learning;

o Transfer learning;

o Reward shaping:

▪ Incorporate domain knowledge;

▪ Potential-based reward shaping, can slow down 

learning if not design well;
Reward design can go wrong
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AGS Bunch Merging

• Before transferring to AGS, beam bunch is 

split into 2 longitudinally to reduce the space 

charge effect

     -> reduce emittance -> improve polarization

Real mountain range 

data showing 2-to-1 

bunch merge in AGS

Wall current monitor 

(WCM) generates 

voltage vs time 

signal. Each 

separated in time by 

N turns (N accelerator 

periods)

• Bunches are later merged before AGS 

extraction;

• Requires expert tuning of many parameters:
o Prone to drift over time;

o Time consuming;

• Controls: RF voltages, phases

• Goal: Obtain a “good” merged bunch profile:
o Emittance preservation:

▪ No particle lost;

▪ Gaussian shape;

▪ No “baby” bunches;

o Stable final bunch profile:
▪ Not shifting left to right;

▪ Not bouncing up and down;

▪ Merged in the center;
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• Bmad simulator; Speed 

problem; Mountain range plots;

• SAC agent: 10,000 initial 

samples + 4,000 training steps;

• 3% emittance growth;

Simulation Results

Fast tuning on test episodes

Target functions Agent learned functions



Workflow
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RF settings

[6+5 numbers]
Accelerator system

RL Agent

Mountain range 

readings

Process & 

Feedback

• Actual system considerations:
o How good is the simulator? How to get enough training data (random sampling)?

o Safety constraints; Setting step size;

o Log historical merge data;

• Data pipeline to process the mountain range plots data:
o Scope settings;

o Emittance; area of curve;

o Center oscillations; number of traces;

o Bunch center positions;
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• We can now do a basic demonstration code to acquire input signals from 

wall current monitors (offloading oscilloscope data) and show results in a 

Jupyter notebook.

• We have a Zynq Ultrascale FPGA evaluation board and an FMC 

expansion card to digitize the WCM signals: 
o 12-bit conversion at 1,000 Megasamples per second, with an analog range 

of +=2.5V

• Next steps after this is completed:
o Evaluating multiple commercially available digitizer products for performance 

comparison to FPGA-based system;

o Work on buffer memory implementation (to store multiple turns);

o Work on the hardware configurations to match the actual system 

specifications;

System Side Preparations
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Bunch Manipulations in the CERN PS1

1. Reinforcement Learning applied to Optimization of LHC beams in the CERN Proton Synchrotron, J. Wulff

• A complex consisting a cascade of 

four separate accelerators before 

injection.
o The nominal bunch spacing of 25 ns 

is created in the PS through RF 

manipulations;

o Those manipulations need to be 

carefully optimized;

o The relevant parameters are the RF 

amplitude and phase;

• Current tuning relies on operators, which 

takes time and suffers performance lost 

due to qualitative judgement errors.

Quad. splitting Triple splitting

Results for both cases are promising

Triple splitting is used as an illustration
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Triple Splitting: Parameters and Objectives

• Three main parameters to optimize:
o Phases and voltages

      Φ14, Φ21, and V14 

• Objectives:
o Final bunch profile observables: 

bunch width & intensity, equal after 

splitting;

o Quality measured through Mean 

Square Error (MSE)  between 

bunches after splitting.

Three simultaneously active cavities with 

different voltages 

→ Non-linear interactions, difficult to 

optimize...

RF voltages

The final profile after the 

triple split is extracted
All bunch profiles are 

compared and the MSE 

between them is calculated
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Segmented RL and Machine Test Results

Example episodeInit Final

Phase opt. steps: 3

Volt opt. steps: 4

Total iterations required: 7

• Segmented SAC agent: Phase → Voltage;

• Bootstrapping from a feature extractor built by CNN to leverage more information from the 

tomoscope structure.

• The extracted information will put the RL agents in a decent place to start the optimization.
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Advantages:

• It can better handle giant search space:
o AlphaGo essentially has search space of all permutations in the Go Game;

o Accelerator control tasks may involve a large number of control points;

• Learning can be swiftly transferred or adapted to novel scenarios:
o What RL learned is stored by the model weights in the Neural Networks; transfer learning

• Online decision-making:
o After training, RL can be applied in an online manner;

Limitations:

• Training requires lots of data, usually need a high-fidelity simulator;

• Not easy to make it work;

• Problem should be frameable as an MDP (or partial):
o All decisions are based on the current state of the world;

Pros & Cons of RL Approaches



Enhancing Electronic Logbooks Using Machine 
Learning* 
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*jmaldonad@bnl.gov

• Natural Language Processing techniques are applied to all user entries in the elog 
database

o Processing data, removing stop words, lemmatizing

• Doc2Vec and Multinomial Naïve Bayes 

• Web Based Search Engine

o Connected to the model class



Web Interface Workflow
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User Enters 

Search Text

Search Text 

is 

Processed

Loaded into 

pretrained 

models
Results

Displayed to 

User

OR

Postprocessing 

for # of entries, 

dates, or logbook

Displayed to 

User

The post processing step prevents the 

need to retrain the entire model just for 

a subset of data that matches these 

requirements.

Downside is higher similarity entries 

may get filtered out by the user.



Web Interface
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• User’s can search by elog and date;

• Filter number of responses;

• The current elog system will be 
evaluated for EIC to see if this 
functionality will be added to the 
elog or another tool;



What’s Next?
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• Link this demo webpage into the elog system to allow users to test 
thoroughly

o Currently live on apps.pbn.bnl.gov/SearchElog

• Then decide how to implement directly into the elog (or another tool)

• Develop new ML tools to help with faster model deployment

• Summer Intern Jennipher Day

o Reinforcement Learning model development for improved search tasks 



Controls Interface for a Virtual Assistant (CIVA)*
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• There are many resources to 

use to troubleshoot an issue: 

eLogs, documents, monitoring 

apps, databases, alarm system, 

etc.

• CIVA consolidates information 

from various resources into a 

central repository;

• Search vectors for words; 

Image pre-processing + OCR;

*kabir@bnl.gov



Multiple GUI Supports

26

Desktop GUI

Web GUI

Next step:

• Natural Language Querying using 

generative AI;

• Adding more data sources;



Anomaly Detection on the RHIC Cryogenics System
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Our focus is one set/pair 

of the First Stage 

Compressors: FS1
10 first stage 

compressors

4 second stage 

compressors

We focus on 26 analog sensors 

for a first-stage compressor: 

19 Temperature (TT), 5 

Pressure (PT), 2 horsepower 

(M77, M79) sensors.

• The compressor has a documented trip which happened on Apr. 

7th, 2022, due to the discharge temperature sensor TT2059 

interlocking the FS1 compressor after it breached a high limit of 

125 degrees C for 3 seconds. Technicians found a loose crimp on 

the sensor, and the compressor was returned to service after 

repairs.

• The LSTM autoencoder was trained on data from Jan. 15th to 

Mar.5th, 2022, and tested on data from Mar. 6th to Apr. 5th, 2022, 

to see if it is able to detect any anomaly precursors.

• Anomaly detection on sensor TT2059 demonstrates the LSTM 

autoencoder is able to detect early precursors so proactive actions 

can be taken to prevent machine failure.



Latent Space Data Analysis
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1. TT2059 has a different pattern with 

other TT temperature sensors;

2. PT2078H and PT2083H don’t have 

obvious data patterns, can be 

omitted for analysis;

3. The sensor TT2059, which is the 

actual cause of the machine trip, 

gets the highest error value.

Latent space visualization for each variable



Future Projects: 
Polarization Optimization
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• Maximize beam polarization:
1. Preserve beam density;

2. Synchronize accelerator components at depolarizing resonance crossings;

3. Minimize depolarizing resonance strengths;

• Goal is to increase polarization by 5%;

Max Energy 

[GeV]

Pol. at Max Energy 

[%]

Source + Linac 1.1 82-84

Booster 2.5 ~80-84

AGS 23.8 67-70

RHIC 255 55-60

Loss in polarization along the chain

Focus on the injector compound 

for RHIC and future EIC



Several places to maximize polarization
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• Booster injection optimization:
o The main objectives for optimization of the Booster injection and capture 

process are to maximize the intensity and minimize the transverse and 

longitudinal emittances. 

• AGS bunch splitting and merging:
o Optimization of these processes is currently done by expert “by eye”;

o A ML approach would help to optimize and maintain relevant outputs 

(longitudinal emittance and intensity) and free up valuable expert resources.

• AGS Energy vs. Time calibration;

• Depolarizing resonance strength;



AGS Energy vs. Time Calibration

31

• Spin depolarizing resonances occur at very specific energies; determining the beam energy 

as a function of time is therefore crucial for optimizing any compensatory efforts, such as 

tune jumps or spin matching;

• In the AGS the largest identified source of depolarization remaining occurs when the proton 

beam passes through 82 resonances;

• Determining the energy at this precision currently relies on a calibration procedure between 

two formulas, one using the frequency (a) and the other using the magnetic field (b);

• The two formulae result in different calculations of the energy as a function of time. The 

“unknown” parameters are fit to minimize the difference between the calculation methods;

• A complimentary energy measurement comes from the polarimetry. The objective of the 

proposed optimization is to combine the three energy measurements into one to reduce 

uncertainty at all energies;

𝛾 = 1 −
1

𝑐2
2𝜋𝑓𝑟𝑒𝑣

2 𝑅0 + 𝑑𝑅 2
−

1
2

 (𝑎)

    = 
1+𝛾𝑡𝑟

2  𝑑𝑅/𝑅 𝜌0𝑐 𝐵𝑖𝑛𝑗+𝐵𝑐𝑙𝑜𝑐𝑘/𝐶𝑠𝑐𝑎𝑙

𝑀0

2

+ 1

1

2

 (𝑏)



Depolarizing Resonance Strength
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• A proposed approach to minimizing the depolarization due to horizontal resonances is to 

compensate for them using 15 independently powered skew quadrupoles to correct each of the 

82 resonances;

• A full optimization of the system involves many knobs (15 for each of 82 resonances). Due to 

the time of the polarization measurement, a brute-force scanning of each individual parameters 

is generally not possible;

• The direct objective of the optimization is to maximize the polarization as measured at the end 

of the AGS acceleration process. The total number of control variables can be reduced by 

arranging the strengths into correlated families;

Skew Quadrupole Current

Skew Quad Model Evaluation
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Thank you for your attention!
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