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Outline

 What is MultiFold?
 What are some applications of MultiFold?

e How does MultiFold work?
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Outline

 What is MultiFold? — the bare minimum to get started
 What are some applications of MultiFold? — proof that the algorithm works
* How does MultiFold work? — peeking into the black box
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¢ What is MultiFold

Unfolding

 Corrects for detector effects, due to inefficiency, finite resolution, ...
— Allows for result comparison with theories and other experiments
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¢ What is MultiFold

Unfolding

« Unfolding methods:
 lterative Bayesian unfolding pagostini. arxiv:1010.0632(2010))
e MultiFold (andreassen et al. PRL 124, 182001 (2020))
* Machine learning driven
* Unbinned
* Simultaneously unfolds many observables
— Correlation information is retained!
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Unfolding

« Unfolding methods:
* Iterative Bayesian unfolding (pagostini. arxiv:1010.0632(2010))

e MultiFold (andreassen et al. PRL 124, 182001 (2020))
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Machine learning driven

Unbinned

Simultaneously unfolds many observables
— Correlation information is retained!
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¢ What is MultiFold
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¢ What is MultiFold

Unfolding B+ p VE=200GeV

a <observable3<b
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« Unfolding methods:

* |terative Bayesian unfolding (pagostini. arxiv:1010.0632(2010) 0.45 0.0175

o MultiFold (andreassen et al. PRL 124, 182001 (2020)) 0.40 0.0150
« Machine learning driven 0.35 0.0125
* Unbinned

0.30 0.0100
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Unfolding

« Unfolding methods:
 lterative Bayesian unfolding pagostini. arxiv:1010.0632(2010))

* MultiFold (andreassen et al. PRL 124, 182001 (2020))
* Machine learning driven
 Unbinned
* Simultaneously unfolds many observables
—> Correlation information is retained!

« Variations of the MultiFold/OmniFold algorithm:

Variation Input

UniFold One event observable

MultiFold Many event observables

OmniFold | Full phase space of the event

observable 1
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To get started

git clone git@github.com:ericmetodiev/OmniFold.git

More updated repo at https://github.com/hep-lbdl/OmniFold

Run OmniFold Demo.ipynb

Replace example files with your own trees

RHIC/AGS Users Meeting, 6/11/2024

¢ What is MultiFold

We also have to specify itnum : how many iterations of the unfelding procedure we want to do.

Customize: Change itnum to your desired number of unfelding iterations.

many iterations of the unfolding process
itnum = 3

There are three flavors of OmniFold. In order of increasing sophistication, they are:

* UniFold: Represent the jet as a single observable,
* MultiFold: Represent the jet as multiple cbservables.
* OmniFold: Represent the jet as a set of particles.

By default, we will implement MultiFold and represent the jet using six jet substructure observbles:

*  ‘Mass', Jet Mass m: the invaraiant mass of the jet four-vector

s 'Mult', Constituent Multiplicity M: the number of particles in the jet

*  ‘width' . Jet Width w: a measure of how broad the jet is

® 'Tau2l' , N-subjettiness Ratic 79;: a measure of how two-pronged the jet is

* ‘zg’, Groomed Momentum Fraction 24 the energy-sharing of the prongs after grooming

®*  'SDMass’ , Groomed Jet Mass mgp: the invariant mass of the jet four-vector after grooming

Customize: Change which observables are used in MultiFold. UniFold corresponds o using a single observable.
obs_multifold = ['Mass', "Mult', ‘Width', *Tau2l', 'zg', 'SDMass']

The observables are already computed in the samples. We will read them in as an cbservable dictionary obs and alse specify histogram
style information.

Customize: Add entries to obs to define your own observables to be used in MultiFeld or to see the unfolding performance on them.

# a dictionary to hold information about the observables

obs = {}

Snippet of Python notebook from
https://github.com/ericmetodiev/OmniFold/blob
/master/OmniFold%20Demo.ipynb
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* Applications of MultiFold

Applications

 MultiFold has been applied to several measurements...

Measurement of Lepton-Jet Correlation in Deep-Inelastic Scattering with the Unbinned deep learning jet substructure measurement in high Q2ep IN e+p CO | | ISIONS IN H E RA
H1 Detector Using Machine Learning for Unfolding collisions at HERA
H1 Collaboration « V. Andreev (LPI, Moscow (main)) et al. (Aug 27, 2021) H1 Collaboration = V. Andreev (Lebedev Inst.) et al. (Mar 23, 2023)
Published in: Phys Revlett 128 (2022) 13, 132002 » e-Print: 2108.12376 [hep-ex] Published in: Phys.lett.B 844 (2023) 138101 « e-Print: 2303.13620 [hep-ex]

8 observables unfolded 6 observables unfolded

in p+p and heavy-ion

Measurement of CollinearDrop jet mass and its correlation with SoftDrop Generalized angularities measurements from STAR at /sy = 200 GeV
groomed jet substructure observables in 4./? = 200 GeV pp collisions by STAR Collaboration = Tanmay Pani (Rutgers U., Piscataway) for the collaboration. (Mar 20, 2024) CO I I IS I O n S at R H I C
STAR Contribution to: Quark Matter 2023 = e-Print: 2403.13921 [nucl-ex]

STAR Collaboration = Youqi Seng for the collaboration. (Jul 15, 2023)

e-Print: 2307.07718 [nucl-ax]

6 observables unfolded 7 observables unfolded in p+p collisions at LHC
Multidifferential study of identified charged hadron distributions in Z-| (A simultaneous unbinned differential cross section measurement of twenty-four easurement of event shapes in minimum bias events
tagged jets in proton-proton collisions at 1/5 =13 TeV Z +jets kinematic observables with the ATLAS detector from pp collisions at 13 TeV
LHCb Collaboration « Roel Aaij (Nikhef, Amsterdam) et al. (Aug 24, 2022) ATLAS Collaboration « Georges Aad (Marseille, CPPM) et al. (May 30, 2024)

Published in: Phys.Rev.D 108 (2023) LO31103 » e-Print: 2208.11691 [hep-ex] e-Print: 2405.20041 [hep-ex] The CMS Collaboration
4 observables unfolded 24 observables unfolded 8 observables unfolded
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* Applications of MultiFold

Applications

* Probing the correlation between perturbative and nonperturbative components within jets at STAR
arxiv: 2307.07718
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* Applications of MultiFold

Applications

* Probing the correlation between perturbative and nonperturbative components within jets at STAR
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How does MultiFold work?
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level Weights: wy(x) = d(x)/g(x)
X A
e
% Data
> /’\ d(x)
~
—
> X
X 4 1141 (X)
2
2
©
2
~
—
» X
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level Weights: Wq (.X') =d (X)/g (.X') Ok for the binned case
X A
e
% Data
> d(x)
S~
—
> X
X a W1 (X)
©
S~
2
©
2
S~
—
» X
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level Weights: Wq (.X') =d (X)/g (.X') Ok for the binned case
X A
g Data ~ f(’]f,‘)/(l — f(,}‘)) Using Bayes’ Theorem; See derivation in backup
©
z d(x) where f(x) is a neural network and trained with the binary
—i

cross-entropy loss function

v
X

1/N dN/dx

v
x
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works
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©
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level Weights: wy(x) = d(x)/g(x) Ok for the binned case
X A
S Data ~ f(:B)/(l — f(ﬂj)) Using Bayes’ Theorem; See derivation in backup
©
z d(x) where f(x) is a neural network and trained with the binary
i

cross-entropy loss function

> X to distinguish events coming from
. wy (x) data vs from PYTHIA+GEANT
g PYTHIA+GEANT
©
£
H g(x)
> X

[ Density estimation - Classification! ]
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level Weights: wy(x) = d(x)/g(x) Ok for the binned case
X A
S Data ~ f(:L’) / (1 — f(ﬂj)) Using Bayes’ Theorem; See derivation in backup
©
z d(x) where f(x) is a neural network and trained with the binary
i

1/N dN/dx

cross-entropy loss function

> X to distinguish events coming from
wy (x) data vs from PYTHIA+GEANT
PYTHIA+GEANT N A _-
: —4
9() S A\
> X 7 e
| % 100 nodes in each layer
7 W [ Density estimation - Classification! ]
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level Weights: wy(x) = d(x)/g(x) Ok for the binned case
X A
S Data ~ f(:L’) / (1 — f(:j{,')) Using Bayes’ Theorem; See derivation in backup
©
z d(x) where f(x) is a neural network and trained with the binary
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cross-entropy loss function
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level Weights: wy(x) = d(x)/g(x) Ok for the binned case
X A
S Data ~ f(:B)/(l — f(ﬂj)) Using Bayes’ Theorem; See derivation in backup
©
z d(x) where f(x) is a neural network and trained with the binary
i

1/N dN/dx

cross-entropy loss function

> X to distinguish events coming from
wy (x) data vs from PYTHIA+GEANT
PYTHIA+GEANT
g(x) NN output
. X probability that

f(f) = eventis from data

1 — f(y_é) — probability event
is from GEANT

[ Density estimation - Classification! ]
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works
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©
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level Weights: wy(x) = d(x)/g(x) Ok for the binned case
X A
S Data ~ f(:B)/(l — f(:j{,')) Using Bayes’ Theorem; See derivation in backup
©
z d(x) where f(x) is a neural network and trained with the binary
i

cross-entropy loss function

> X to distinguish events coming from
x wy (x) data vs from PYTHIA+GEANT
g PYTHIA+GEANT
5 loss(f() == > log(F() ~ ) log(1— [(x))
= g(x) xEdata xX€Egeant NN output
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> X f(x) = eventis from data
> 1 — () = probability event
Xunlikely f( ) is from GEANT
f(funlikely) =0
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level Weights: Wq (X) =d (X)/g (.X') Ok for the binned case
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©
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level

X A
= Data
©
z d(x)
x 4+ PYTHIA+GEANT,
= .
. % Z | reweighted
v W1 (X) ﬁ §
g PYTHIA+GEANT
T
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event 1= X; | ‘event 1 observable 1] A . event 1, X w, (%)
event 2 reweight event 2, X wy (¥;)
_ - I
event 1 observable 6
_ . -
event N event N, X wy (Xy)
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Iterative reweighting: Step 1, iteration 1

Detector-level

1/N dN/dx

1/N dN/dx

A

Data
d(x)

> X

wy (X)
PYTHIA+GEANT

g(x)
» X
event 1= x; | [event 1 observable 1]
event 2
event 1 observable 6
event N
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reweight

q

% 4 PYTHIA+GEANT,
Z | reweighted
<

> X

PYTHIA+GEANT,
reweighted

event 1, X wy (%)

event 2, X wy (%)

event N, X wy (%y)
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How MultiFold works
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I
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X X
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=
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Iterative reweighting: Step 1, iteration 1

Detector-level

1/N dN/dx

1/N dN/dx

y

A

Data
d(x)

> X

wy (X)
PYTHIA+GEANT

gx)

event 1= x; | ‘event 1 observable 1]

event 2

event 1 observable 6

—

event N
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ﬁ

reweight

q

PYTHIA+GEANT,

reweighted

event 1, X wy (%)

event 2, X wy (%)

event N, X wy (%y)

Yougqi Song (Yale)

% 4 PYTHIA+GEANT,
Z | reweighted
<

> X

event
matching

q

¢ How MultiFold works

Output

/ Detector-level Particle-level i\

Data Truth

1

1

| ?

I

1
-> | —>
X " — X

1/N dN/dx

b PYTHIA+GEANT

[\,

PYTHIA

AV

1/N dN/dx 1

Input

AN dN/dx 1/N dN/dx

PYTHIA+GEANT, PYTHIA,
reweighted reweighted

event 1, X wy(X;) |event1, X wy(¥;)

event 2, X wy (X5)

event 2,,)W1 (X,)

event N, X wy (Xy) | eventN, X wy (Xy)
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Iterative reweighting: Step 2, iteration 1

* Detector response is stochastic

¢ How MultiFold works

 Two identical particle-level events might not get mapped to identical detector-level events

RHIC/AGS Users Meeting, 6/11/2024
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event N, X wy (Xy
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¢ How MultiFold works

Iterative reweighting: Step 2, iteration 1

* Detector response is stochastic
 Two identical particle-level events might not get mapped to identical detector-level events

* w;(x) is a weighting function of detector-level events
e Want v;(y), a weighting function of particle-level events

PYTHIA+GEANT, PYTHIA,
reweighted reweighted
event 1, X wy(X;) |event1, X wy(¥;)

event 2, X wy (X,) | event Z?Wl (%5)

event N, X wy (Xy) | event N, X wy(Xy)
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¢ How MultiFold works

Iterative reweighting: Step 2, iteration 1

* Detector response is stochastic
 Two identical particle-level events might not get mapped to identical detector-level events

* w;(x) is a weighting function of detector-level events
e Want v;(y), a weighting function of particle-level events

v1(y)

N

PYTHIA+GEANT, PYTHIA,

PYTHIA . -
reweighted reweighted
event 1 =y, event 1, X wy(X;) |event1, X wy(¥;)
event 2 event 2, X wy(¥%,) |event2, X wy(X,)
event N event N, X wy (%y) |event N, x wy (Xy)
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¢ How MultiFold works

Iterative reweighting: Step 2, iteration 1

* Detector response is stochastic
 Two identical particle-level events might not get mapped to identical detector-level events

* w;(x) is a weighting function of detector-level events
e Want v;(y), a weighting function of particle-level events

~ h(y)/(1 = h(y)),
where h(y) is a neural network and trained with the v, (V)

binary cross-entropy loss function / \

PYTHIA+GEANT, PYTHIA,

PYTHIA . -
reweighted reweighted
event 1 =y, event 1, X wy(X;) |event1, X wy(X;)
event 2 event 2, X wy(¥%,) |event2, X wy(X,)
event N event N, X wy (%y) |event N, x wy (Xy)
11/14

RHIC/AGS Users Meeting, 6/11/2024 Yougi Song (Yale)



Iterative reweighting: Step 2, iteration 1 + How MultiFold works

PYTHIA, w/ weights

from step 1

event 1, X wy (%) / \
— PYTHIA, w/ proper
weighting function

event 2, X wy (X,)

event 1, X v, (1)

event N, X wy (Xy) event 2, X v1 ()
vy (y) ﬁ

PYTHIA event N, X v; (Yy)

event1 =7y, \ /
event 2

Unfolding result after 1 iteration

event N
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Iterative reweighting: Step 2, iteration 1 + How MultiFold works

PYTHIA, w/ weights

from step 1

event 1, X wy (%) / \
— PYTHIA, w/ proper
weighting function

event 2, X wy (%)

* v,(y) used to reweight both
particle and detector-level
events in iteration 2

Dy(y) — | . wy(x), V() ..
PYTHIA event N, X v; (¥y)

event 1 =y, \ /
event 2

Unfolding result after 1 iteration

event 1, X v, ()

event N, X wy (Xy) event 2, X v1(¥,)

event N
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Iterative reweighting: Result + How MultiFold works

* Result: Particle-level events, reweighted by vy (y) — step 2 output of the last iteration
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Iterative reweighting: Result + How MultiFold works

* Result: Particle-level events, reweighted by vy (y) — step 2 output of the last iteration
« Unfolding methods:
 lterative Bayesian unfolding (p'agostini. arxiv:1010.0632(2010))
o MultiFold (andreassen et al. PRL 124, 182001 (2020))
* Machine learning driven
* Unbinned
» Simultaneously unfolds many observables
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 lterative Bayesian unfolding pagostini. arxiv:1010.0632(2010))
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Iterative reweighting: Result + How MultiFold works

* Result: Particle-level events, reweighted by vy (y) — step 2 output of the last iteration
« Unfolding methods:
[} Iterative BayeSian UﬂfOlding (D'Agostini.arXiv:1010.0632(2010))> [ Appendix: OMNIFOLD as a Maximum Likelihood Estimate
€

e MultiFold (andreassen et al. PRL 124, 182001 (2020))

In this Appendix, we review the statistical underpinnings of Tterative Bayesian Unfolding (IBU) [5] as well as
JMNIFOLD and confirm that they converge to the maximum likelihood estimate of the true particle-level distribution,/

v" Machine learning driven
v~ Unbinned - reweighting is done event-by-event
v~ Simultaneously unfolds many observables - can adjust the input dimension of neural networks
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Iterative reweighting: Result + How MultiFold works

* Result: Particle-level events, reweighted by vy (y) — step 2 output of the last iteration
« Unfolding methods:

[ Ite rative Baye5ia n U nfo | d i ng (D'Agostini. arXiv:1010.0632(2010))> [ Appendix: OMNIFOLD as a Maximum Likelihood Estimate
C

e MultiFold (andreassen et al. PRL 124, 182001 (2020))

In this Appendix, we review the statistical underpinnings of Tterative Bayesian Unfolding (IBU) [5] as well as
JMNIFOLD and confirm that they converge to the maximum likelihood estimate of the true particle-level distribution,/

v~ Machine learning driven
v" Unbinned - reweighting is done event-by-event
v~ Simultaneously unfolds many observables - can adjust the input dimension of neural networks
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2 i i #* * ] 1
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Conclusions

¢ Conclusions

MultiFold (andreassen et al. PRL 124, 182001 (2020))
v" Machine learning driven
v~ Unbinned - reweighting is done event-by-event
v~ Simultaneously unfolds many observables - can adjust the input dimension of neural networks

« Resources readily available, e.g., nhttos://github.com/ericmetodiev/OmniFold and https://github.com/hep-lbdl/OmniFold
« Successful applications in H1, STAR, LHCb, ATLAS and CMS

« Easy access to correlation information among observables

* Promising potential for multi-differential measurements
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* Applications of MultiFold

Applications

* Probing transverse- momentum dependent (TMD) parton distribution functions at H1

— T 5 I I
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Imultaneous ) correct tor:

-Jet pr - Jetn - Jet ¢ - Electron pt - Electron p, - Electron-jet imbalance - Electron-jet azimuthal angle correlation
* Probing TMD jet fragmentation functions at LHCb Aaij et al. Phys. Rev. D 108, 1031103 (2023)
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Iterative reweighting: Step 1, iteration 1 + How MultiFold works

Detector-level wi(x) =d(x)/g(x)
X A
-D 3
% Data = M Using Bayes’ Theorem
2 d(x) P (%] qead)
= P(AIB) = P(B|A)P(A)
_ Pdotal %) 5D Prged) P(B)
. X P (data) P (qemt [%) - P&
Wi X
§ PYTHIA+GEANT 1(x) . (daﬁtﬂ %) P[ﬂw} Derivation from Chapter 4,
= — -5 Normalized to 1 Probabilistic classification, of M.
; [ [tl&&“tl X ) P (data) Sugiyama, T. Suzuki, and T.
= g(x) Kanamori, Density Ratio Estimation
probability that x is from data in Machine Learning (Cambridge
- probability that % is from GEANT University Press, 2012).

v
x

~ f(x)/(1 = f(z))

where f(x) is a neural network and trained with the binary
cross-entropy loss function
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Iterative reweighting: Step 1, iteration 2 + How MultiFold works

Data

event 1

event2 PYTHIA+GEANT,
reweighted to data
event N event 1, X wy(X;)

event 2, X w,(X,)

W (x) —

PYTHIA+GEANT,
w/ weights from
iteration 1

event 1, X v, (Y1)

event N, X wy (Xy)

event 2, X vl(}_;z)

event N, X vy (¥y)
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Iterative reweighting: Step 2, iteration 2 + How MultiFold works

PYTHIA, w/ weights
from step 1, iteration 2 / \

event 1, X w, (%)

PYTHIA, w/ proper

event 2, X w,(X,) i ) .
weighting function

event 1, X v,(y;)

event N, X w, (Xy) event 2, X v;(y,)
' v, (y) ﬁ
]I:YTHI,?, wé weights oventN. X 73 G
rom step 2,
iteration 1 \ /
event 1, X v, ()
event 2, X v1(5,) Unfolding result after 2 iterations

event N, X vy (¥y)
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Iterative reweighting: Iteration n

Iteration n, Step 1:

Data EMBeddLng*I*
a4
Training Vol dation

Run mod £40 on )

(
> Decide$ when, Jfr‘OM'hihj should stop Run moolﬂl-]eft() an\ L

N
Run mdnl.!)redicﬂ) onP\' Obtwin Wé,:'ﬁl\fj.

Wujh‘rr Cznrr%rono{,inﬂ &

Embedding ore rMLed to sty 2,

RHIC/AGS Users Meeting, 6/11/2024

* lteration n, Step 2:

?T‘kl'm* ?5\1'\1'5.(*

Tra.lnm\j

NS

¢ How MultiFold works

Decides when {'roa'nshj showldl 'si'oP

Run rvwdd.’rezficﬂl on,‘\. Obtain we{ikts.

W e,ijh‘fr corr%rona[,[ g b

?!5*"\ Lo

mrwh_ed 'tosﬁef;),

or taken as the final weights if this is the last iteration

*: (With weights pulled from step 1 of iteration n)
**: (With weights pushed from step 2 of iteration (n-1))
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Iterative reweighting: Toy example * How MultiFold works

* Adapted from slides by Ben Nachman

Initial

"] Generation
Simulation

o | 0% | 50%

Measured

1 J100%| 50%

1 2

|deal

A

] Ideal
Measured
-
2
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Iterative reweighting: Toy example
* Adapted from slides by Ben Nachman

Initial 1 /deal
Measured
A
"] Generation
Simulation
— —
1 2 1 2

o | 0% | 50%

Measured

1 J100%| 50%

1 2
|deal

RHIC/AGS Users Meeting, 6/11/2024

0 %. Stm'ﬁin5 YO‘m’t. og
% % itcation 2.
[ 2 7 Gen.
X%‘ K%‘ n
Y
E =
Al
| z 7 G'E.Il,
W,
v
L
0 3 dp match data
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[ 2 7 Gen
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Result from
iteration 2

7 Gen.

¢ How MultiFold works

"] Generation
Simulation

L1l

1 2

10 mMakch 50-50 from
restmSe mot Fix
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Iterative reweighting: Toy example
Adapted from slides by Ben Nachman

¢ How MultiFold works

Result from

Result from Result from

Initial Ideal iteration 1 iteration 2 iteration oo
Measured
A A A , A , A _

Generation Generation Generation Generation
Simulation Simulation Simulation Simulation

—) —p > > >

1 2 1 2 1 2 1 2 1 2

o | 0% | 50%

Measured

1 |100%] 50%

1 2

|deal
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Iterative reweighting + How MuliFold worts

* Why do we iterate?

xV.(}’.) xV, (yz)
il

W) |

X Wi (%))
Tz P&ﬁu I P&ﬁu ———— artice
oric}inal matches Jwta, but breaks the fxes the W,me{ el

fespons. matvix Mt bup doesn £

thLh daiq
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Challenges

« Computationally expensive
 How to publish an unbinned result? arxiv:2109.13243

RHIC/AGS Users Meeting, 6/11/2024 Yougi Song (Yale)
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