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Moftivation

Extracting Fragmentation Functions (FF)

« We can complement e*e™ by studying hadrons in jets in pp collisions.

Fragmentation functions provide valuable information about the final-state

parton in a collision.

Vacuum FF typically extracted from

1. ete” collisions

2. SIDIS and pp

Collinear

(pp) collisions

dep—)( jeth)+X

dpy"dni*dz,

Collinear
Hadron-in-jet Cross Section
Phys. Rev. D 101, 079901 (2020)

Collinear FFs are sensitive to both quark and gluon FF.

* pp provides direct constraints on the gluon FF, especially at high x where

SIDIS and ete™ are scarce.
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. n JET
Motivation e
H H H p H T
Extracting Fragmentation Functions (FF) z, = p;ET ~ 7 -—_—-.

Transverse-Momentum-Dependent FF (TMD) jr=1 pro]‘p]_et (P;I)
T
dorp—(jeth)+X dopp—rjet+X TMD FF
F(Zh, jT§ pT,n, R) — T _ . 7 _ Kang, Z.-B, Liu, X, Ringer, F, Xing, H.
dpy dni®dzd?jr dpy dnie JHEP 1711 (2017) 068
Z + jet, v/s=8TeV, R=0.5 S R— LHCb dat.a ——
* Unlike Collinear, takes into account transverse momentum component 10 | 20<m <45 re
of fragmenting hadron.
2 f
« Looking at TMD FFs on different energy scales (v/s) allows study of LR
evolution effects. 30 < pyr < 50 GeV 50 < py < 100 GeV
« pp, unlike SIDISand e*e™, provides more direct access to gluon o1y Ty T
TMD FFs. 0 05 1 15 2 25 0 05 1 15 2 25 0 05 1 15 2 25 3
« Compared to SIDIS, pp allows access to TMD FFs at higher Q2. i1 (GeV) i1 (GeV) it (GeV)

Example TMDs: shown as functions of j;, integrated over all z,,. Shown for 3 jet p; ranges.
Kang, Z.-B, Lee, K, Terry, |, & Xing, H. Phys. Letters B, 798, 134978 (2019)

GOAL: extract charged-pion jet fragmentation functions in STAR Run15 proton-proton collisions at+/s = 200 GeV (pp200).
*** Work shown here is all in-progress, uncorrected, does not yet include all uncertainties/statistical errors. ***
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Analysis

e TMD and Collinear FF extracted from Yield Ratios...

R Njets™ Collinear
collinear NjetStOt' (Z}71T bin Width) Yield Ratio .
Kaufmann, T, Asmita M., Werner V.

Phys. Rev. D 101, 079901 (2020)
Njets™ TMD
Rrup = Nratstot (27 bin width)Zn(F) (T biny | Vield Ratio
h T T Kang, Z.-B, Liu, X, Ringer, F, Xing, H.
JHEP 1711 (2017) 068

 STAR Run15 pp200 Minbias triggers (SSDMB-5)

Steps
* Jet Reconstruction
* Anti-ky Jet-Finding Algorithm (R=0.6).
* Apply jet-level experimental cuts that isolate events of interest.

*  When required in simulation, match detector-level jets to closest particle-level jet and
require jet axes to be separated by AR < 0.2.

* Charged Pion Identification
* Select charged pions via detector-level cuts (TPC, TOF, nay).

* Underlying Event Correction
* Apply 5GeV cut to reconstructed detector jet pT.

* Correctjet pT for “underlying event” or peripheral events that did not contribute to the event
of interest (Off-Axis Cone Method).

* Next Step: Data corrections!
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Data Corrections

Several corrections to data that must be accounted for...

-- Accounts for bin migration due to detector effects.

* Need to “unfold”/account for bin migration in
observables pion z,, j;, and jet p;.

* Bin Migration:

-- Multi-observable unfolding using OmniFold **

** Andreassen et al., PRL. 124, 182001 (2020 )

Detector-level ("reconstructed") jet and hadron
events with no particle-level ("true") match.

* background / “fakes”:

Particle-level jet and hadron events ("true")
with no detector-level ("reconstructed") match.

* detector efficiency:

* Backgrounds and Bin Migration will be accounted for in OmniFold.

* Background correction is applied by weighting data with factor wy,,,
* Wy, are calculated prior to unfolding. They are fed into OmniFold as an input.

» Efficiency will be accounted for after applying OmniFold.
* Notdiscussed in this talk, as it doesn’t directly involve OmniFold.

6/11/24
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Unfolding M=USVT

OmniFold: A “New” Unfolding Method at STAR Uac Lo
* Many existing methods used for unfolding. e N [ ] -0.75
* |terative Bayesian Unfolding (IBU) 10- e - 0.50
* Bin-by-bin . [ 05
* Singular Value Decomposition (SVD)
¥ 6 Il -0.00
* Drawbacks to existing methods: oos
* Difficult to unfold multiple variables at the same time 4 o0
* Dependent on how data/embedding is binned (histograms) . o
O-L. | l I ] l -—-1.00
15 20 25 . 30 35 40
* | employ the OmniFold method. detector jet pr
Advantages C™Wac
+ Unfolds all observables at once. " 1os
 Isn’t dependent on binning. 0
Challenges o
* This method is being used in STAR, but not widely. N 1310
* Currently being used on STAR jet substructure measurements to study parton showers. s 107
- —1072
* Initially unsure if method would work for unfolding FFs. ;i —10°
—10?
* Lots of closure tests! ; ~10°

0~ 0 0 g 0 ] d
10 15 20 25 30 35 40

* OmniFold algorithm can be further discussed in two categories... particle jet pr
UniFold: Using OmiFold algorithm for single-variable unfolding _
. . . . . . Example of SVD unfolding scheme.
MultiFold: Using OmniFold algorithm for multi-variable unfolding. K represents eigenvalues of S.

Dmitry Kalinkin, STAR
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Unfolding Using OmniFold

Goal: ML obtains approximation for “truth” by a series of reweighting.

Detector-level Particle-level
Inputs:
* Embedding
Simulation "embedded” with sampling of random detector-level events. = Data
* Detector-Level Embedding (“sim”) E \
-
* Particle-Level Embedding (“gen”) 2
* Data (detector-level) \
« Starting embedding weights (w,,..=1/, , inverse luminosit
. g . g g ( init /L y) (Waars) Step 1: Step 2:
* Star ting data WGIgh ts (Wdata) (W) Reweight Sim. to Data Reweight Gen.
* Used to account for “backgrounds”: Detector-level ("reconstructed") jets Data. wn,
with no particle-level ("true") match. Un—1 — Wn Un—1 — Vn
NDetEvtyatched i 9 . . Pull Weights .
w ;= B
data i NDetEvt, i S1rnul‘at10n —5 | Generation
2
=)
N Push Weights
Outputs: | | | |

*  Weights for particle-level embedding (gen) which gives best
approximation of truth. These | call w,. “Detector-Level Embed”  “Particle-Level Embed”

. Repo,;‘teg res;'llt wil(l“be ahl\z)onte Carlo distribution: “gen” Andreassen et al, PRL, 124, 182001 (2020)
weighted with w, ,(“trut
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OmniFold: Closure Test

* Since truth is not known, it is difficult to know if OmniFold adequately models the given data/embed.
* There are also many parameters that affect how the ML algorithm fits embed - data.

e Giving OmniFold a “known truth” allows the algorithm to be studied.

* Inthis sense, “giving ML the answer”.

* Allows investigation of different OmniFold optimization parameters.

“Split Embedding”

* Proof of closure is stronger if “embedding” (gen/sim) and “data” (data/truth) are truly independent data sets.
* Forthisreason, mock data was generated.

* Half of embedding is used as “embedding” (300 runs), while the other half is used to generate mock data (3017 runs).

”Data” - Detector-Level Mock Data

— Detector-Level Embedding, weighted by 1/L
Gen. - Particle-Level Embedding, weighted by 1/L
“Truth” - Particle-Level Mock Data
MultiFold - Particle-Level Embedding, weighted by W,

output

IBU - Iterative Bayesian Unfolding (built-in to MultiFold)
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Normalized NEvts

Mock Data

Using run12 pp200 embedding sample (601 runs, ~3M events).
Split embedding to create 2 independent data sets.
* 1stHalf of Embed Runlist: “Sim”, “Gen”
o 21 Half of Embed Runlist: ”Mock Data”, “Truth”

Will show these overlaid with OmniFold results on next few slides (red).

Split Embed: JetpT

runl2 pp200 Embed (601 Runs)

10-1;
10-2;
10—3é
10-4é
10-5;
10-6%
10—7é

1078 4

0 10
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[ "Data" (Mock Data Sim.)
"7 "Sim"(Embed), Weighted 1/L

-=-=- 'Gen'(Embed), Weighted 1/L
. "Truth" (Mock Data Gen.)

20 30 40 50
Jet pT [GeV]

Normalized NEvts

Split Embed: jT
runl2 pp200 Embed (601 Runs)

[ "Data" (Mock Data Sim.)

3.0 - -7 "Sim"(Embed), Weighted 1/L
--=- 'Gen'(Embed), Weighted 1/L
. "Truth" (Mock Data Gen.)

2.5 A

2.0 A

1.5 1

1.0 A

0.5

0.0 = T T T

0.0 0.5 1.0 1.5 2.0
jT

Harrison-Smith, H. | RHIC/AGS Users Meeting

Normalized NEvts

Split Embed: Zh
runl2 pp200 Embed (601 Runs)
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[ "Data" (Mock Data Sim.)
77 "Sim"(Embed), Weighted 1/L
—-- 'Gen'(Embed), Weighted 1/L
 "Truth" (Mock Data Gen.)
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Closure Test

Closure Test: MultiFold Jet pT [ "Data" (Mock Data Sim.)
*  Now using run12 pp200 embedding sample (601 runs, ~3M 10°1 L "Sim"(Det-Lev Embed,Weighted) 4
events). -- 'Gen'(Part-Lev Embed, Weighted)
* Splitembedding to create 2 independent data sets. e "Tru‘.:h" (Mock Data Gen.)
) MultiFold
* 1stHalf of Embed Runlist: “Sim”, “Gen” £ 103 §
o 2nd Half of Embed Runlist: ”Mock Data”, “Truth” %‘1
Lo
)
N _5
* MultiFold Closure Test was successful! Té 10 7
o
Z. X
10—7 =~ .
N )
N
1079 f =_
”Data” - Detector-Level Mock Data F - 3
] ) S 1.25 F T ptE A =
~ 1. — Detector-Level Embedding, weighted by 1/L = 1 b ottt gy e :
Gen. - Particle-Level Embedding, weighted by 1/L EE 0.75 o
”Truth”- Particle-Level Mock Data TR e T
MultiFold - Particle-Level Embedding, weighted by W, ., 0 10 20 30 40 50

Jet pT [GeV]
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Closure Test

Closure Test: MultiFold Zh 60—y
[ [ "Data" (Mock Data Sim.) ]
*  Now using run12 pp200 embedding sample (601 runs, ~3M [ "~ "Sim"(Det-Lev Embed,Weighted) ]
events). 5F -- 'Gen'(Part-Lev Embed, Weighted) -
) ) i [ WS "Truth" (Mock Data Gen.) ]
* Splitembedding to create 2 independent data sets. a | — MultiFold
* 1stHalf of Embed Runlist: “Sim”, “Gen” Ui>_] [FHJ
o 2Md Half of Embed Runlist: ”Mock Data”, “Truth” Z -ELH
f5
X
©
* MultiFold Closure Test was successful! =
:

”Data” — Detector-Level Mock Data o
— Detector-Level Embedding, weighted by 1/L ég

Gen. - Particle-Level Embedding, weighted by 1/L e F

“Truth”- Particle-Level Mock Data

MultiFold - Particle-Level Embedding, weighted by W,
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Closure Test

40— 7T T T L B L IR
Closure Test: MultiFold jT i 1 "Data" (Mock Data Sim.) .
« N . . N 35F "Sim"(Det-Lev Embed, Weighted) ]
ow using run12 pp200 embedding sample (601 runs, ~3M : —— 'Gen'(Part.Lev Embed, Weighted) ]
events). s0b | "Truth" (Mock Data Gen.) :
[ MultiFold

* Splitembedding and sampled it to create 2 independent data
sets.

* 1stHalf of Embed Runlist: “Sim”, “Gen”
o 21 Half of Embed Runlist: ”Mock Data”, “Truth”

B
&)

[EEN
(@)

* MultiFold Closure Test was successful!

Normalized NEvts
N
o

[N
o

0.5}

0.0 }

”Data” — Detector-Level Mock Data :
1.25 F

— Detector-Level Embedding, weighted by 1/L
Gen. - Particle-Level Embedding, weighted by 1/L
”Truth”- Particle-Level Mock Data 0.75 \ ."I"+ "]". -l- E

MultiFold - Particle-Level Embedding, weighted by W, 0.00 025 050 075 1.00 1.25 1.50 1.75 2.00
iT

1
-
——
1
T
T

Ratio to
Truth
—
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Second Closure Test

First closure test assumed data and simulation (“Data” and “Sim”) have same
shape. What if this isn’t the case?

runl2 pp200 Embed (601 Runs)

T — 1 T — T T T
Performed second closure test where data/simulation have different slopes. | e [ "Data" (Mock Data Sim.)
1L = 3 n n : .
« Asecond “new slope” mock data set was constructed by weighting original 1070 A R — ?Isix,igg&;ﬁ;&?&‘gﬁ;;m')
mock data to give it some shape. ’ ] ‘Gen'(Part-Lov Embed, Weighted)
2]
)
> —3F .
& 10
p
9
]
N
= 107°F - -
: =N
z EEhaN .
107} Hall -
[\\-
1079 ————f : e
= 1-2? 1ol » 3
S g '-."" ol =
BE OTBE i o -
= ’ :— Fohobed =] e (] o L] .
g 0: L 1 1 1 1 |."| 1 1 L 1 1 1 1
0 10 20 30 40 50
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—r——T—Tr7——T—rr7——T
[ "Mock Data" (2nd Half Embed)
10—1 | "Sim"(1st Half Embed) i
e~~~ —=- 'Gen' (1st Half Embed)
s g T T TTmees =L 'Truth (2nd Half Embed))”
LE — MilftRok~ < _
. _3 o—e IBU S~
g 10
[}
Z
o)
() -5
® 10
o
©
S
3 10—7
Z
10—9E',l,'::::::::: it !
L}
= 125 F = .
gg F "L.""'i“ Hﬁ: = L ] =
e 0.75 F = el ":
e I R R R R R
0 10 20 30 40

Second Closure Test

“Reweighted” Closure Test

* ForJet pl, OmniFold and IBU both break down for pT < 5GeV.

* Forboth Jet p; > 5GeV, j;, and Z,, OmniFold improves.

* This raises the question: How different will simulation and data actually be?

Jet pT [GeV]

6/11/24

Normalized Num. Evts

Ratio to
Truth

“Data” — “new” Run15 pp200- like mock data

— Detector-Level Embedding, weighted by 1/L
Gen. - Particle-Level Embedding, weighted by 1/L
“Truth”- Particle-Level Mock Data

IBU- Iterative Bayesian Unfolding Method

MultiFold - Particle-Level Embedding, weighted by W ,u:

— T )
[ "Mock Data" (2nd Half Embed) 6 L

 —| "M(l)ck Data" (anlHalf Embed) ]
"Sim"(1st Half Embed)

== 'Gen' (1st Half Embed)

[ "Truth" (2nd Half Embed))"

— MultiFold

o= [BU

Normalized Num. Evts

4.0 T
"Sim"(1st Half Embed)
35 C == 'Gen' (1st Half Embed)
. [ "Truth” (2nd Half Embed))” 1
3.0 —  MultiFold ]
5 o—e [BU 1
2.5F
2.0F
1.5k
1.0
0.5
0.0 F
1.25 F
N
0.75
0.0
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Data/Sim Comparison

A New Run15 Mock Data Model
How different will data/simulation (embedding) actually be?

With a few changes to my previous Mock Data Model, a new Run15 Mock Data Model (right) can be constructed to more closely

model an existing STAR model of this (left).

[ Jets Pt: trig = JP2 |

T T — . r 1 L
o E ............................................................................................ —— 2015pp200 Data N 1 "Data" (Mock Data Sim.)
= . 10~ 1} ,/':u \.-)_ 1 New Slope "Data" (Mock Data Sim.) -
R S 0 N S8 S 2015 Pp200 Embedding N "Sim"(Det-Lev Embed, Weighted)
0 ? H : ! }‘\ -- 'Gen'(Part-Lev Embed, Weighted)
— =N
] N .~ . S L S SO wn 1 N
e 5 1073 F N .
— m Ny
107 == 5 —h-—t..
0t 5 107t sz, :
= z ot
ot 5 ﬂ“ﬂ;ﬂ
E Z N .-l -
107 == 10-7}+ \*-\ H H_
2 RY
1.8E e
16E | I
e 1073k = AR RRE
15— ';:, Lo o - 3
06 . 8|8 12F - E
04E % 8 1E = = 3
02 : : : : : I T
00 1b 2I0 3I0 4I0 5b 60 = 04 3 PRI B - A o T 3
Ratio of 2015 data to 2015 embedding 10 20 30 40 50
Ting Lin, STAR Jet pT [GeV]
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Data/Sim Comparison

Run15 Mock Data Model: Closure Test

* This new distribution unfolds much better under closure test, in its ability to reconstruct the truth.

Closure Test: Multifold JetpT
Run12 pp200 10/1 9/23

D 'Mock Data (2nd Half Embed)
"Sim"(1st Half Embed, Weighted 1/L) |

== 'Gen' (1st Half Embed, Weighted 1/L)

[ "Truth" (2nd Half Embed))"

— MultiFold

_
)
L

10-3 1

1073

Normalized Num. Evts

—_
(=)
4

Jet pT [GeV]
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Normalized Num. Evts

Ratio to
Truth

Closure Test: Multifold jT

Run12 pp200 10/19/23

4.0
E Mock Data (2nd Half Embed)
"Sim"(1st Half Embed, Weighted 1/L) ]

3.5 2 —- 'Gen’' (1st Half Embed, Weighted 1/L)

E 1 "Truth" (2nd Half Embed))" 1
3.0F — MultiFold -

r e IBU ]
2.5} ]
2.0F ]
1.5¢F .
1.0} ]
0.5 8
0.0F : TT o R

E L, |
1.25 F i E

E L

1

0.75 -:E

E_. ';:l. + L . 1xl-T 1§

0.0 1.5 2.(
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Normalized Num. Evts

Closure Test: Multifold Zh
Run12 pp200 10/19/23

T
D Mock Data (2nd Half Embed)

"Sim"(1st Half Embed, Weighted 1/L)
—=- 'Gen' (1st Half Embed, Weighted 1/L) ]
[ "Truth" (2nd Half Embed))"
— MultiFold

o= IBU
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Unfolding Data: Njets;,: (pr) AllJets: JetpT

3/18/24, runl2 pp200 Embed

*** Unfolding is a work-in-progress and doesn’t yet include all corrections,
uncertainties, and errors ***

IBU - Iterative Bayesian Unfolding (built-in to MultiFold)

109
* Thisjetyield is proportional to the denominator of my FF yields. | 1 Data
"Sim"(Embed), Weighted 1/L
) -== 'Gen'(Embed), Weighted 1/L
107 - MultiFold
%)
45
> F
= :
_4 | B
S 10741 |
() .
s '
s | iy
-6 ] ! S
51077 s
N .
"Data” — Detector-Level run15 Data ! \1. :
Sim. — Detector-Level run12 Embedding, weighted by 1/L 1.0=9%+ 7} \
Gen. — Particle-Level run12 Embedding, weighted by 1/L i 2
MultiFold - Particle-Level Embedding, weighted by W, ., ., :
1
0 10 20 30 40 50

Jet pT [GeV]



Normalized NEvts

- : T "Data” — Detector-Level run15 Data
UnfOldlng ¢ N] e tSTL' (pT ) Zh ) Sim. — Detector-Level run12 Embedding, weighted by 1/L
« **Unfolding is a work-in-progress and doesn’t yet include all corrections, Gen. - Particle-Level run12 Embedding, weighted by 1/L
uncertainties, and errors *** MultiFold - Particle-Level Embedding, weighted by W,

* Thes pionyields represent the the numerator of my FF yields.

Data Unfold: TetpT Data Unfold: Zh Data Unfold: jT
3/18/24, runl? pp%OOpEmbed 3/18/24, runl2 pp200 Embed 3/18/24, runl2 pp200 Embed
10° 35 o
R [ Data 6 1 Data . 1 Data
"Sim"(Embed), Weighted 1/L "Sim"(Embed), Weighted 1/L "Sim"(Embed), Weighted 1/L
--- 'Gen'(Embed), Weighted 1/L —-=-= 'Gen'(Embed), Weighted 1/L 3.0 4 —=-= 'Gen'(Embed), Weighted 1/L
1072 — MultiFold B —— MultiFold —— MultiFold
UNCORRECTED n*YIELDS UNCORRECTED n*YIELDS 2.5 - UNCORRECTED m*YIELDS
10_4 7 7 = “@ 2.0 - *@
~ 3 -
PR] ;' 1.5 -
1079 - A
2 1.0 A
11 0.5 -
1078 - j,
t T T T I 0 T T T T L ll 0.0 T T T T —T T T
0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 0.8 1.0 1.2

Jet pT [GeV] Zh Ji



UKentucky LCC

* Unfolding was done using the University of Kentucky Center for Computational
Sciences Lipscomb Computing Cluster (LCC).

LCC came online beginning in Fall 2019.
Intel CPUs, batch processing.

The LCC is used by researchers from 75+ research groups across the

universities.

* Primarily physics, engineering, biology, chemistry.

On average, a single MultiFold closure test takes:

* 5-7 hrsto run the full training algorithm.

* 1node
e 1CPU

Center for

CPU Hours: Total

Users 204
Computing Nodes 198
Cores per Node 32-48
Average Run Time 14 hrs
(perjob)
Average Wait Time 0.47 hrs
(perjob)
Cores per. Job
I 65 - 128
I 33 - 64
400k I o - 16
257 - 512
1
17 - 32
200k B 129 - 256
I B 513 - 1024
5-8
o CCLEE LT LR - 3-4
N 2k - 4k

2024-04-08
2024-04-22

Computational Sciences



Conclusions

* Simplest proof-of-concept OmniFold closure tests have been passed.

* OmniFold presents as good an unfolding result as IBU
* Disagreement between data/embed and its effect on OmniFold has been explored.

* OmniFold performance depends on
* Magnitude of disagreement
* How well simulation replicates experimental conditions.

« OmniFold is shown to be a viable option for multi-dimensional unfolding of STAR data, specifically with applications
to jet fragmentation function analysis.

Next Steps and In-Progress
* Finish correcting for backgrounds and inefficiencies.
* Apply systematic and statistical uncertainties to unfolded FF results.




Backup
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Correcting for Fakes: W,

* Fakes are accounted for by applying a weight (w,,,) to each data point in OmniFold.
* Thesew,,, are an input to OmniFold.

How do we know what amount of data were “fakes”?

* W, is computed from what | call embedding “matched rate”.
* How many events in embedding had a detector jet/particle jet match and a pion-level match?
* Inother words, what fraction of events did the detector see that came from “real” events?

NDet]etyqatched (bin)
NDetJetrot (pin)

Matched Ratepin) =

* NDetJets,, includes
 Events from detector jets that didn’t match to a particle jet (“no jet match”).
* Events where there was a jet match, but pions within the jet didn’t match (“no pion match”).

« Wdata is obtained by sampling embedding “matched rate” at each data point.



Normalized NEvts

Correcting for Fakes: W,

* Fakes are accounted for by weighting by data with some weight (w,,.,) when inputting to unfolding.

In general, wy,., is computed by sampling histograms of matched detector jets and total detector jets...

Wdata (eventi) =

 Application of this is still a work-in-progress.

10‘1-;
10‘2-;
10‘3-é
10‘4-;

10_53

1 Data
[ Data, weighted Wdata

15 20 25 30
Jet pT [GeV]

NDet]Jetyatched (event i)
NDet]et(event i)

[—1 Data
[ Data, weighted Wdata

1.0

348 7

340 7

2:9

2:0

18

1.0

0.9

1 Data

[ Data,

weighted Wdata

0.0 T
0.0 0.2

0.4
T

0.6 0.8

1.0



Analysis and Cuts

Steps
* Jet Reconstruction
* Anti-ky Jet-Finding Algorithm (R=0.6).
* Apply jet-level experimental cuts that isolate events of interest.

*  When required in simulation, match detector-level jets to closest particle-level jet and
require jet axes to be separated by AR < 0.2.

* Charged Pion Identification

* Apply hadronic cuts that further isolate events with charged pions.
* Underlying Event Correction

* Apply 5GeV cut to reconstructed detector jet pT.

* Correctjet pT for “underlying event” or peripheral events that did not contribute to the event
of interest (Off-Axis Cone Method).

6/11/24 Harrison-Smith, H. | RHIC/AGS Users Meeting

pp200 Data Cut Summary
Jet-Level Pion-Level
IVeT' Z|< 30 1< nO'(T[)TpC <25
RJ'<0.95 -4< no(mM)ror <4
|77jet | <1 Hits Fit(TPC) > 20

|77jet det | <0.8
Sum Track py > 0.5
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Reweighting with Machine Learning

* OmniFold is a Python-based machine-learning unfolding method, which trains a neural network.

* Keras, TensorFlow, EnergyFlow

* Trains neural network f(x) using Categorical Cross-Entropy Loss Function, which has known
result

f(x) _ Do (x) (Andreassen and Nachman PRD 101, 091901 (2020))

1-f(x) p(x)

w(x) =

* po(x) and p,(x) give probability densities for embedding and data.

*  w(x) is the weighting parameter used to train one data/sim. set to another. This is what Keras
obtains.

* Input:
*  Winit: initial values for Keras to use for w(x).
* Data: detector-level
« Embedding: Pairs of matched detector-level and particle-level jets
* Select best-match jets by requiring R<=0.2
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Machine Learning Params

* There are several main parameters that tell OmniFold how to process the given data sets:

Batch Size (1,000)
» Data/embed are broken into "batches” to be analyzed

* Batch size tells how many data points should be in one batch.

Iterations (4)

* Number of times a batch is passed through the algo.

» After each iteration, the ML algo. outputs a set of approximations for w(x).
Model Layer Size ( [100, 100, 100])

* Size of the neural network to “train”.
Seed (ON, Seed=43)

*» Some ML algorithms make use of random number generators. Setting a “seed” assighs these random number
generators the same value each time, to minimize fluctuations in w(x).

» Setting these parameters correctly for the given data sets are key to optimizing OmniFold, and having it work
effectively.

6/11/24 Harrison-Smith, H. | RHIC/AGS Users Meeting

26



