

Yuri Mitrankov

Stony Brook University

11 June 2024

Flow Studies

- From initial conditions to final state particle momentum anisotropy
- Hydrodynamic expansion, Energy loss, Non-flow

Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Direct Photons

Direct photons

- Created all the time from initial hard scattering to kinetic freeze-out
- Hard to measure and to disentangle the different sources

11/06/2024

Inclusive and decay photon v_2 PHIENIX

11/06/2024

2024 RHIC/AGS Annual Users' Meeting

- Inclusive photons: direct + decay
- Decay photon: dominated by $\pi^0 \rightarrow$ mirrors hadron flow
- At high p_T direct photons dominate $(\gamma/\pi^0 \text{ increases})$

$$v_2^{dir} = \frac{R_{\gamma} v_2^{incl} - v_2^{dec}}{R_{\gamma} - 1}$$

Direct and decay photon v_2

11/06/2024

2024 RHIC/AGS Annual Users' Meeting

Direct Photon Flow

11/06/2024

Direct photon flow for high p_T is consistent with zero within uncertainty

 v_2 at low and high p_T

11/06/2024

Larger time of quark production and equilibration in initial purely gluonic system t_{chem} is preferred, but still fails above 2 GeV/c

Heavy Flavor

Separated Charm and Beauty R_{AA} and v_2 PHIENIX

- Clear mass ordering observed between $(b \rightarrow l)$ and $(c \rightarrow l)$ at RHIC for both R_{AA} and v_2
- Interplay of energy loss and hydro at mid- p_T ?

2024 RHIC/AGS Annual Users' Meeting

Heavy Flavor v_2 Measurement

11/06/2024

2024 RHIC/AGS Annual Users' Meeting

Hint of rapidity-dependence of charged hadron v_2

Heavy Flavor v_2 Measurement

11/06/2024

- Hint of rapidity-dependence of charged hadron v_2
- Open HF v_2 is consistent with previous PHENIX results at mid-rapidity

Heavy Flavor v_2 Measurement

11/06/2024

- Hint of rapidity-dependence of charged hadron v_2
- Open HF v_2 is consistent with previous PHENIX results at mid-rapidity
- HF particles flow with the QGP, but less than charged hadrons

J/ψ Nuclear Modification (R_{AA})

11/06/2024

RHIC: $R_{AA}^{MID} > R_{AA}^{FWD}$ Forward: $R_{AA}^{LHC} > R_{AA}^{RHIC}$ $\langle N_{\rm part'}$

J/ψ Nuclear Modification (R_{AA})

11/06/2024

Coalescence effect between charm quark and antiquark leads to J/ψ regeneration at LHC

J/ψ Elliptic Flow Measurement

11/06/2024

J/ψ Elliptic Flow Measurement

11/06/2024

	• PHENIX $J/\psi v_2$ at forward rapidity is consistent with O
	 Forward and mid-rapidity results RHIC are consistent, but the uncertainties are large
ertainty	
4.5 5	5

J/ψ Elliptic Flow Measurement

11/06/2024

4.5 5 $p_T [\text{GeV/c}]$

- PHENIX $J/\psi v_2$ at forward rapidity is consistent with O
- Forward and mid-rapidity results at RHIC are consistent, but the uncertainties are large
- The ALICE nonzero result is different from our measurement
- Not enough energy at RHIC for J/ψ regeneration to become noticeable?

Cu+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

π^0 Elliptic Flow Measurement

11/06/2024

- The $v_2/(\varepsilon_2 N_{part}^{1/3})$ are consistent within uncertainties in Cu+Au and Au+Au collisions
- The elliptic flow values are nonzero at $p_T > 5 \text{ GeV/c}$
- Does $\varepsilon_2 N_{part}^{1/3}$ scaling work even at high- p_T ?

 π^0 Elliptic Flow Measurement

The $v_2/(\varepsilon_2 N_{part}^{1/3})$ are consistent within uncertainties in all centralities in Cu+Au collisions

11/06/2024

- Scaling v_2 with n_q and kE_T/n_q
- Scaling with n_a quark-coalescence models
- may indicate that the elliptic flow develops prior to hadronization

• ϕ mesons - smaller rescattering cross section in comparison to π^{\pm} and (anti)protons

2024 RHIC/AGS Annual Users' Meeting

ϕ meson Elliptic Flow vs Models PHIENIX

11/06/2024

PRC 107, 014907 (2023)

 ϕ meson elliptic flow is well described by hydrodynamic model iEBE-VISHNU and transport model AMPT

Small Systems

Elliptic flow in small systems Nat. Phys. 15 (2019) 3, 214-220

11/06/2024

2024 RHIC/AGS Annual Users' Meeting

Multiplicity dependence

11/06/2024

2024 RHIC/AGS Annual Users' Meeting

Talk by Sanghoon Lim

SUMMARY **Large Systems:**

- Low- p_T photon "puzzle" remains unsolved
- High- p_T direct photons flow is zero, π^0 flows at high p_T partonic energy loss?
- Light and Heavy flavors flow at mid p_T hydro + energy loss?:
 - Light flavored hadrons coalescence is a main mechanics for flow transition from partonic level
 - J/Psi not enough energy for heavy flavor recombination to become noticeable

Detailed study of small systems flow in next section (stay tuned)

SUMMARY **Large Systems:**

- Low- p_T photon "puzzle" remains unsolved
- High- p_T direct photons flow is zero, π^0 flows at high p_T partonic energy loss?
- Light and Heavy flavors flow at mid p_T hydro + energy loss?:
 - Light flavored hadrons coalescence is a main mechanics for flow transition from partonic level
 - J/Psi not enough energy for heavy flavor recombination to become noticeable

Detailed study of small systems flow in next section (stay tuned) Thank you for attention!

BACK UP

Heavy-Flavor Extraction

- Using tuned PYTHIA+GEANT4 embedded in real Au+Au events we can extract the inclusive muon fraction
- Extract the HF muon fraction by comparing data to tuned simulation with HF contribution excluded
- Determine heavy flavor muon v₂ in the inclusive muon sample:

•
$$v_2^{HF} = \frac{1}{F^{HF}} \left(v_2^{\mu} (1 - F^{HF}) v_2^{LF} \right); F^{HF} = 1 - \frac{1}{F^{HF}} \left(v_2^{\mu} (1 - F^{HF}) v_2^{LF} \right)$$

11/06/2024

PH^{*}ENIX

 $-F^{LF}$

Photon Flow Extraction

Direct photon puzzle- a decade ago

11/06/2024

2024 RHIC/AGS Annual Users' Meeting

OBSERVED:

High yield and high v_2 at the same time (azimuthal anisotropy in p_T) Incompatible with the old paradigm:

- high yield \rightarrow high T \rightarrow early emission
- high $v_2 \rightarrow$ late emission (low T, v_2 needs time to build up)

Challenge to models, but also to experiment!

Multi-messenger photons: penetrating and soft

11/06/2024

Hadronic and e.m. simultaneously Pre-hydro: KoMPoST Pre-eq takes over only at 3 GeV (and prompt already dominant there) Observed flow max around 2 GeV, but still too small

Much has been written about "the photon v_2 puzzle" [55, 71]. In a nutshell, the puzzle stems from the fact that the measured direct photon elliptic flow has been found to be as large as that of hadrons, in the region $p_T < 4$ GeV/c, as is also clear from the data shown in this paper. The majority of theoretical models currently underpredict the photon spectrum and elliptic flow. No approach with realistic dynamics can both reproduce photon spectrum and elliptic flow, and this situation has not been modified because of the inclusion of a pre-hydrodynamic phase like KøMPøST.

Issues remain even after pre-hydro

Multi-messenger compared to previous results

FIG. 6. (a) The yield of direct photons in Au + Au collisions at maximum RHIC energy, in the 0%-20% centrality class. The different channels are enumerated in the text. Here, $\tau_{chem} = 1 \text{ fm}/c$. We compare with experimental data from the PHENIX [60] and STAR [61] Collaborations. (b) The ratio of experimental data over the total calculated photon yield.

Pre-equilibrium photons: not a solution, neither for yield nor for v_2 Discrepancy at low p_T (as opposed to STAR)

- $\tau_{chem} \rightarrow time when$ quarks are produced and equilibrate in an initially purely gluonic system
- Large $\tau_{chem} \rightarrow$ suppression of early photon emission rate

FIG. 8. Same caption as for Fig. 7, but for the direct photon v_2^{γ} {SP}. Data are from Ref. [62].

Consistent at low p_T , fails at "medium"

Single Muon Analysis

- Track quality cuts to purify muons from heavy flavor
- Extract v₂ for hadrons and inclusive muons
- Tuned MC simulating precise particle ratios to separate muons from light and heavy flavor decays

Charm and Beauty

11/06/2024

2024 RHIC/AGS Annual Users' Meeting

Measurement methods of v_2

Subtraction method

11/06/2024

Invariant mass fit method

2024 RHIC/AGS Annual Users' Meeting