

Ejiro Umaka, Brookhaven National Lab 2024 RHIC/AGS Annual Users' Meeting 11 June, 2024

FLOW MEASUREMENTS PROSPECTS AND HIGHLIGHTS

EXPERIMENT AT RHIC

Ejiro Umaka, Brookhaven National Laboratory

Installation completed on May 2023 • First collisions in the brand new detector occurred on May 18, 2023 • See <u>first performance plots</u> showcasing sPHENIX journey through commissioning

• Wide array of physics topics at sPHENIX from hard probes to "softer" physics, plus spin physics!

Ejiro Umaka, Brookhaven National Laboratory

- Wide array of physics topics at sPHENIX from hard probes to "softer" physics, plus spin physics!
- This talk will focus on flow related measurements at sPHENIX

Ejiro Umaka, Brookhaven National Laboratory

Collectivity

FLOW IN HEAVY ION COLLISIONS

In the initial state, for mid-central collisions, the shape of the overlap region is elliptical

- Anisotropic flow/collective behavior: correlations with respect to the event plane. Encapsulates the systems response to azimuthally asymmetric conditions in the initial state.
- Can be described by Fourier expansion of the azimuthal distribution of produced particles

$$N(\phi) = N_0 \{1 + 2v_1 cos(\phi - \Psi) + 2v_2 cos[2(v_n = \langle cos[n(\phi - \Psi)] \rangle$$

Ejiro Umaka, Brookhaven National Laboratory

4

Stronger pressure gradients and expansion in-plane. **Particles are boosted** in-plane more than out-of-plane

 $[\phi - \Psi] + ... \}$

METHODS FOR ANALYZING ANISOTROPIC FLOW 5

vobs

• The event flow vector Q_n is a 2D vector in the transverse plane:

$$Q_{n,x} = \sum_{i} w_i \cos(n\phi_i) = \mathbf{Q}_n \cos(n\Psi_n),$$

$$Q_{n,y} = \sum_{i} w_i \sin(n\phi_i) = \mathbf{Q}_n \sin(n\Psi_n),$$

$$p_y$$
 p_x
 p_z
 p_z

- The event plane and observed v_n :
 - $\Psi_n = \arctan 2(Q_{n,y}, Q_{n,x})/n,$ the

$$v_n^{\text{obs}}(p_T, y) = \langle \cos[n(\phi_i - \Psi_n)] \rangle$$

• The event plane resolution and final flow coefficients:

$$\mathscr{R}_n = \langle \cos[n(\Psi_n - \Psi_{\rm RP})] \rangle$$
 $V_n = \frac{\gamma_n}{\mathscr{R}_n}$

Ejiro Umaka, Brookhaven National Laboratory

 Whereas, the scalar product method uses the magnitude of the flow vector as weights

$$\begin{split} \langle Q_n^a Q_n^{b \, *} \rangle &= \langle v_n^2 M^a M^b \rangle \\ v_n(\eta, p_t) &= \frac{\langle Q_n u_{n,i}^*(\eta, p_t) \rangle}{2\sqrt{\langle Q_n^a Q_n^{b \, *} \rangle}} \\ \underline{arXiv:0809.2949 \, [nucl-ex]} \\ \end{split}$$

• Tracking subsystems:

• MVTX, INTT, TPC, TPOT

- Calorimeters:
 - EMCAL, HCAL
- 1.4T magnet
- Forward subsystems used for centrality and event plane

measurements:

- sEPD
- MBD
- ZDC/SMD

Ejiro Umaka, Brookhaven National Laboratory

- Tracking detectors:
 - MVTX, INTT, TPC, TPOT
- Calorimeters:
 - EMCAL, HCAL
- 1.4T magnet
- Forward detectors used for centrality and event plan

measurements:

- sEPD
- **MBD**
- ZDC/SMD

Ejiro Umaka, Brookhaven National Laboratory

sPHENIX Experiment at RHIC Data recorded: 2023-07-16 00:54:00 EST Run / Event: 21707 / 3194 Collisions: Au + Au @ $\sqrt{S_{NN}}$ = 200 GeV

sPHENIX is currently in the commissioning phase. This talk will focus on the commissioning of the subsystems used for flow measurements and recent results with the commissioning data.

Year	Cryo-weeks	Species
2023	11.5	Au+Au
2024	25	p+p
		Au+Au
2025	28	Au+Au

SEPD COMMISSIONING

sPHENIX Event Plane Detector

Ejiro Umaka, Brookhaven National Laboratory

9

PROSPECTS WITH THE SEPD

Ejiro Umaka, Brookhaven National Laboratory

10

ZDC/SMD COMMISSIONING

Zero degree calorimeter and shower max detector

The ZDC is made out of 3 tungsten-fiber modules located symmetrically at z = +/-18m. The SMD is located between the first and second ZDC module and has 2 layers of scintillator strips, which provides (x,y) positions for where the neutrons hit the ZDC. The ZDC/SMD system provides measurement of direct flow of neutrons in HICs.

Ejiro Umaka, Brookhaven National Laboratory

11

PROSPECTS WITH THE ZDC/SMD

Ejiro Umaka, Brookhaven National Laboratory

12

MBD COMMISSIONING

The Miniumum Bias Detector

dynode PMT. 3.51 ≤ |eta| ≤ 4.61

Ejiro Umaka, Brookhaven National Laboratory

13

EVENTPLANE MEASUREMENT MBD

Ejiro Umaka, Brookhaven National Laboratory

<u>Charged hadron v₂ (WIP)</u>

- INTT clusters in phi correlated with MBD psi₂ using the event plane method (ongoing analysis)
- Repeat of the PHENIX analysis, but new for sPHENIX as part of commissioning both subsystems

Ejiro Umaka, Brookhaven National Laboratory

15

FLOW MEASUREMENT WITH MBD EVENTPLANE 16

<u>Neutral pion v₂ (completed)</u>

- di-photon clusters reconstructed with EMCAL
- PiO v₂ extracted with scalar product method. MBD north/south treated as 2 subevents.
- New sPHENIX results as afunction of centrality is in good agreement with the previous PHENIX results (in red)

Ejiro Umaka, Brookhaven National Laboratory

sPH-CONF-BULK-2024-01

sPHENIX Time Projection Chamber 2024-05-11, Run 41967 - Event 5055 ρ + ρ 200 GeV, 1.4 T Magnetic Field

CURRENT STATUS

- sPHENIX subsystem commissioning in p+p collisions is making good progress
- High statistics Au+Au physics data expected after p+p running
- Stay tuned for new flow measurements from sPHENIX!

Ejiro Umaka, Brookhaven National Laboratory

18

is making good progress +p running X!

Thank you!

QUESTIONS?

<u>Ejiro Umaka</u>, Brookhaven National Lab 2024 RHIC/AGS Annual Users' Meeting 11 June, 2024

