

In collaboration with C. Plumberg, D. Almaalol, T. Dore, D. Mroczek, W. M. Serenone, L. Spychalla, P. Carzon, M. Sievert, F. Gardim, and J. Noronha-Hostler – <u>arXiv:2405.09648</u>

 $\tau = 0.60 \text{ fm/c}$

BSQ charge fluctuations in a heavy-ion collision

- BSQ fluctuations of chemical potentials are then evolved with hydrodynamics
- After fluid reaches energy density threshold, freezes-out and particlizes

- Heavy-ion collision is broken in several stages
- Conservation laws dictate the global conservation of BSQ charges
- Local fluctuations may arise in the initial stage due to gluon splitting at high- or baryon stopping at lower energies

P. Carzon, PRC 105 (2022) 034908, <u>1911.12454</u>
O. García Montero, PRC 109 (2024) 044916, <u>2308.11713</u>

BSQ charge fluctuations in a heavy-ion collision

G. Denicol et al., PRC 98 (2018) 034916, <u>1804.10557</u>

Previous works including one or more conserved charges have pointed at their importance

Complete evolution of conserved charges needs:

- 1. A full 4D EoS
- 2. Solution of BSQ equations with diffusion matrix
- 3. Initialization of new transport coefficients

BSQ charge fluctuations in the initial state

C. Plumberg, JSSM et al. (2024) <u>2405.09648</u>

ICCING provides BSQ fluctuations at the initial stage by splitting gluons within CGC framework

- ICCING (Initial Conserved Charges in Nuclear Geometry) samples an energy density profile to **initialize BSQ densities**
- To be useful, densities need to be **converted** to BSQ chemical potentials and temperature using a 4D EoS

Propagating BSQ fluctuations w hydrodynamics

- We use a **lattice based 4D EoS**
- Inversion of table EoS requires
 high computational cost and
 loss of some solutions
- We use CCAKE an SPH hydrodynamical approach to solve the equations of motion
- SPH has the natural benefit of knowing all densities for all
 SPH particles

Smoothed Particle Hydrodynamics (SPH) is used to evolve initial BSQ densities in time

CCAKE := Conserved ChArges with hydrodynamiK Evolution We use Israel-Stewart equations of motion with shear viscosity and, in principle, non-zero bulk viscosity

$$D_{\mu}T^{\mu\nu} = 0, D_{\mu}N_{X}^{\mu} = 0, \qquad X \in \{B, S, Q\}$$
$$N_{X}^{\mu} = \rho_{X}u^{\mu} + n_{X}^{\mu} = 0,$$

Fluctuations of BSQ charges at freeze-out

- Initial chemical potentials are as
 large as 400 MeV
- Average chemical potentials are still consistent with zero (LHC) at all times
- Most SPH particles (68%) have $\mu_B \lesssim 50$ MeV at freeze-out

Initial charge chemical potential fluctuations survive until freeze-out!

Standard observables: charged particle spectra

All charged particles' and identified particles' multiplicities are consistent with previous results

Q. What is the influence of charges on the charged particle spectra?

- Previous framework (w.o. <u>charge</u> evolution) already described data
- Multiplicity is **reproduced well with and wi**thout initial state fluctuations
- Identified particle yields are also consistent

Standard observables: <pT> and flow

C. Plumberg, JSSM et al. (2024) <u>2405.09648</u>

20

Centrality [%]

0

60

40

Q. What is the influence of charges on < pT > ?

- Proton < pT > fits very well but mesons overshoot
- If we add bulk viscosity, this will improve!
- Tuning other simulation parameters will bring this to a better agreement
- Using the PDG2021+ hadron list also has an influence on the yields $$_{\rm JSSM\ et\ al.\ (2023)\ \underline{2309.01737}}$$

Q. What is the influence of charges on flow?

- Flow coefficients are approximated quite well
- Improved statistics and a slightly larger shear viscosity can bring results to a better agreement with experimental measurements
- Including charge fluctuations makes essentially no difference here (makes sense!)

Since energy density distribution is unchanged after ICCING, total flow is unchanged

Signals from BSQ fluctuations in flow

Q. What other influence do BSQ fluctuations have on flow?

• 1POI and 2POI method is used for identified particle flow coefficients

$$v_n^{1\text{POI}}\{2\} = \frac{\langle v_n v_n' \cos n(\Psi_n - \Psi_n') \rangle}{v_n\{2\}}$$

A. Holtermann et al. (2023, 2024) <u>2307.16796</u>, <u>2402.03512</u>

• If the event plane angles are not aligned, 1POI gets suppressed

$$v_n^{2\text{POI}}\{2\} = \sqrt{\langle (v_n'')^2 \rangle}$$

- 2POI is not suppressed, even if event plane angles are fully misaligned
 - BSQ charge fluctuations lead to an enhancement of 2POI flow for (multi-)strange baryons
 - LHC updates will bring the statistics necessary to contrast

with experiment

Signals from BSQ fluctuations in flow

Q. What if we compute flow coefficients for particles and anti-particles separately?

- When computing flow of particles and antiparticles together, any potential difference gets smeared out – even if it's statistically significant!
- This effect seems to be amplified by mass and charge content (e.g., Omega baryons all BSQ charges)

Measuring the individual flow coefficients for particles and anti-particles can be a signal of BSQ fluctuations

New observables

Conclusions

- Baryon, strangeness, and electric charge fluctuations produced from gluon splitting on the initial state are relevant – even at the LHC
- Chemical potentials can reach large values and then get damped to **non-negligible values** until freeze-out
- Good description of multiplicities (all charged and *averaged* identified) and mean transverse momentum
- 1POI and **2POI** flow observables sensitive to charge fluctuations on the initial state from gluon splitting
- *Individual* identified particle flow coefficients also sensitive to BSQ fluctuations

Flow observables can be sensitive to BSQ charge fluctuations in the initial state from gluon splitting!

Outlook

• Study new flow observables with improved statistics

$$C_n(\text{hadron}) = \frac{v_n^h\{2\} + v_n^{\bar{h}}\{2\}}{2v_n^{h+\bar{h}}\{2\}} \quad D_n(\text{hadron}) = \frac{v_n^h\{2\} - v_n^{\bar{h}}\{2\}}{2v_n^{h+\bar{h}}\{2\}} \quad A_{\text{ch}}(\text{hadron}) \propto \frac{D_n(\text{hadron})}{C_n(\text{hadron})}$$

& more! (In progress)

- Second-order transport coefficients and full BSQ diffusion matrix in CCAKE
- Out-of-equilibrium contributions to ICCING (See work from KØMPØST group)
- Use an improved 4D LQCD EoS (See work from C. Ratti's group)

Back-up

Conservation laws built-in by construction

Kernel function W imposes coarse-graining onto set of fictitious 'SPH particles'

Slide credit: C. Plumberg, CPOD 2024

Blue := LQCD EoS Yellow := tanh-conformal EoS Purple := Conformal EoS Red := Conformal Diag EoS

- Initial fluctuations set density scale
- Most of SPH particles fall beneath nuclear saturation density after a few fm/c $\,$

- Fluid spans a wide range in chemical potentials during evolution
- Average values are consistent with zero
- Freeze-out values are below 50–100 ${\rm MeV}$