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BSQ charge fluctuations in a heavy-ion collision

* Heavy-ion collision is broken in several stages
* Conservation laws dictate the global

conservation of BSQ charges

Freeze

* Local fluctuations may arise in the initial

stage due to gluon splitting at high— or baryon

stopping at lower energies
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 BSQ fluctuations of chemical potentials are then evolved with
hydrodynamics
* After fluid reaches energy density threshold, freezes-out and

particlizes
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BSQ charge fluctuations in a heavy-ion collision
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Previous works including one or more conserved charges have

pointed at their importance

Complete evolution of conserved charges needs:

1.

A full 4D EoS

2. Solution of BSQ equations with diffusion matrix

3.

Initialization of new transport coefficients



https://arxiv.org/abs/2112.08724
https://arxiv.org/abs/1804.10557
https://arxiv.org/pdf/1906.11181
https://arxiv.org/abs/2401.00596

BSQ charge fluctuations in the initial state
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* ICCING (Initial Conserved Charges in Nuclear Geometry)
samples an energy density profile to initialize BSQ densities
ICCING provides BSQ fluctuations at the initial * To be useful, densities need to be converted to BSQ chemical

stage by splitting gluons within CGC framework potentials and temperature using a 4D EoS
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Propagating BSQ fluctuations w hydrodynamics

r =125 fm/e r =145 fmfc r =175 fmfe

*  We use a lattice based 4D EoS

e Inversion of table EoS requires
high computational cost and
loss of some solutions

e We use CCAKE — an SPH

hydrodynamical approach to

solve the equations of motion CCAKE := Conserved ChArges with hydrodynamiK Evolution
e SPH has the natural benefit of We use Israel-Stewart equations of motion with shear viscosity
knowing all densities for all and, in principle, non-zero bulk viscosity

SPH particles

D, T =0,

4 )
Smoothed Particle Hydrodynamics D " NE = 0, X € {B : S : Q }
(SPH) is used to evolve initial BSQ Néf”( = px ut + n/;( — O’

\_ densities in time )




Fluctuations of BSQ charges at freeze-out
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[ Initial charge chemical potential fluctuations survive until freeze-out! ]
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Standard observables: charged particle spectra

Q). What is the influence of charges on the charged particle spectra?
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Standard observables: <pT> and flow
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Q). What is the influence of charges on <p1>7

* Proton <pT> fits very well but mesons overshoot
* If we add bulk viscosity, this will improve!
e Tuning other simulation parameters will bring this to a better agreement

e Using the PDG2021+ hadron list also has an influence on the yields

Q). What is the influence of charges on flow?

* Flow coefficients are approximated quite well

 Improved statistics and a slightly larger shear viscosity can bring
results to a better agreement with experimental measurements

* Including charge fluctuations makes essentially no difference here

(makes sense!)

Since energy density distribution is unchanged after ICCING, total

flow is unchanged
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Signals from BSQ fluctuations in flow

Q). What other influence do BS(Q) fluctuations have on flow?

e« 1POI and 2POI method is used for identified particle flow coefficients
(vpvl cosn(W,, — U ))
v {2}

e If the event plane angles are not aligned, 1POI gets suppressed

2POI{2} \/T

« 2POI is not suppressed, even if event plane angles are fully misaligned

uiFOl{2} =

(. BSQ charge fluctuations lead to an enhancement of 2POI )
flow for (multi-)strange baryons

« LHC updates will bring the statistics necessary to contrast

with experiment

- J
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Signals from BSQ fluctuations in flow

Q). What if we compute flow coefficients for particles and anti-particles

separately?

 When computing flow of particles and anti-
particles together, any potential difference gets

smeared out — even if it’s statistically significant!

e This effect seems to be amplified by mass and
charge content (e.g., Omega baryons all BSQ
charges)

Measuring the individual flow coefficients for particles

and anti-particles can be a signal of BSQ fluctuations




New observables
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Conclusions

 Baryon, strangeness, and electric charge fluctuations produced from gluon
splitting on the initial state are relevant — even at the LHC
e (Chemical potentials can reach large values and then get damped to non-

negligible values until freeze-out

* Good description of multiplicities (all charged and averaged identified) and
mean transverse momentum

 1POI and 2POI flow observables sensitive to charge fluctuations on the initial
state from gluon splitting

» Individual identified particle flow coefficients also sensitive to BSQ

fluctuations

[ Flow observables can be sensitive to BSQ charge fluctuations in the initial state from gluon splitting! J




Outlook

e Study new flow observables with improved statistics
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& more!  (In progress)

* Second-order transport coefficients and full BSQ diffusion matrix in CCAKE
* Out-of-equilibrium contributions to ICCING (Sece work from K@MPAST group)
* Use an improved 4D LQCD EoS (See work from . Ratti’s group)

Thank you!
e
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Following the motion
volume element
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Grid-based Smoothed particle
hydrodynamics hydrodynamics

Conservation laws built-in by construction

Slide credit: C. Plumberg, CPOD 2024

Kernel function W imposes coarse-graining
onto set of fictitious ‘SPH particles’
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Number of SPH particles
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e Initial fluctuations set density scale

* Most of SPH particles fall beneath nuclear saturation density after a few fm/c



600 f 1 ‘ 1

4 N/SNN:5'02 TeV _-
1 Pb-+Pb 0-5%

N\

350 0 B0 T30 0 B0 =250 0 5m0
s [MeV] s [MeV] o [MeV]

* Fluid spans a wide range in chemical potentials during evolution

* Average values are consistent with zero

Freeze-out values are below 50-100 MeV
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