Small system flow measurements from the PHENIX experiment at RHIC

Sanghoon Lim Pusan National University

RHIC&AGS AUM 2024

PHENIX experiment

Nature Physics 15, 214 (2019)

5

Nature Physics 15, 214 (2019) PRL 113, 112301 (2014) PRC 95, 014906 (2017)

Smaller v₂ in p+Au and larger v₃ in ³He+Au
 → Consistent with hydrodynamic models

Nature Physics 15, 214 (2019) PRL 123, 039901 (Erratum) (2019)

Initial-state correlation model fails to describe the data

Detector acceptance

PRC 105, 024901 (2022)

Consistent v₂ with two methods

Consistent v₂ and v₃ with two methods

PRC 105, 024901 (2022)

Consistent v_2 when using similar η coverage Stronger non-flow in smaller η gap

11

PRC 105, 024901 (2022)

Can not calculate v₃ in p+Au and d+Au due to negative coefficient c₃ between CNT-FVTXN

Collectivity in ŋ

2

Au/Al

p/d/³He

v₂(η) in d+Au and ³He+Au scales with dN_{ch}/dη Sharp sudden rise in v₂ at backward in p+Al and p+Au likely from non-flow

Longitudinal decorrelation? Pre-flow?

Significantly weaker translation of v_3 than v_2 in the lower multiplicity case

Non-flow subtraction

Unstable non-flow correction depending on systems and kinematic regions Non-flow correction should be done carefully

Comparison RHIC and LHC

Most of theory calculations show higher v_3/v_2 at the LHC

Non-flow subtracted results show higher v_3/v_2 at RHIC

Multiplicity dependence

³He+Au

PRC 107, 024907 (2023)

Stronger kinematic dependence in lower multiplicity and higher p_T

Multiplicity dependence

AMPT qualitatively describes the kinematic dependence

Summary

- PHENIX has performed extensive studies on collectivity in small systems
 - Comparison of two methods in the same kinematic region: Obtained consistent v_2 and v_3 with the EP method and the 3X2PC method
 - In the other kinematic region with a smaller Δη gap:
 Could not extract v₃ due to negative Fourier coefficients
 Stronger kinematic dependence in lower multiplicity and higher p_T

• In smaller multiplicity, the flow coefficients are very sensitive to: non-flow effect, fluctuation, decorrelation

Fourier coefficients

Model comparison

Non-flow correction in models

