2024 RHIC/AGS ANNUAL USERS' MEETING

A New Era of Discovery Guided by the New Long Range Plan for Nuclear Science

Theoretical progress in small systems calculations

Wenbin Zhao

Lawrence Berkeley National Laboratory University of California, Berkeley

June 11-14, 2024, RHIC/AGS

Collectivity in large and small systems

 Collective flow in p-p, p-Pb and Pb-Pb at the LHC.

ATLAS, Phys. Lett. B789, 444.

• Collective flow in p-Au, d-Au and He3-Au in RHIC.

PHENIX: Nature Physics, **15**, pages214–220 (2019); STAR: PhysRevLett.130.242301.

• Collective flow observed from large to small systems.

Standard model of Heavy-Ion Collisions

- Initial conditions (3D-Glauber, TRENTo, IP-Glasma, AMPT...)
- Viscous hydrodynamics (MUSIC, VISHew, CLVis, Trajectum...)
- Hadron cascade afterburner (UrQMD, SMASH, JAM...)

• One fluid rules them all.

Dynamic 3+1D simulation

C. Shen and B. Schenke, Phys. Rev. C 97, 024907 (2018), Phys. Rev. C,105 (2022), 064905.

3DGlauber + MUSIC + UrQMD

 3D-Glauber + MUSIC + UrQMD works well in describing bulk dynamics observables low energies to high energies in heavy-ion collisions.

Full (3+1)D simulations in asymmetric systems

W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys. Rev. C 107, 014904 (2023).

- The (3+1)D hybrid model describes the yields and η -dependent $dN_{ch}/d\eta$ for all asymmetric systems
- The asymmetric shape from central to peripheral collisions is well captured.

$v_n(p_T)$ (n = 2, 3) from two-particle correlations

PHENIX η range: [-3.9, -3.1] v.s. [-0.35, 0.35] [-3.0, -1.0] v.s. [-0.35, 0.35];

STAR η range: [-0.9, 0.9] and $|\Delta \eta| > 1.0$

W. Zhao, S. Ryu, C. Shen and B. Schenke Phys. Rev. C 107, 014904 (2023).

- Using the PHENIX definition, our 3D hybrid model reproduces the $v_2(p_T)$ and $v_3(p_T)$ for all three systems.
- The 3D hybrid model gives larger $v_3(p_T)$ with the STAR definition in (p, d)+Au collisions than those from PHENIX.
- The longitudinal decorrelation explains 50% difference between PHENIX and STAR v_3 measurements.

Collective flow in small systems at low energies

W. Zhao, S. Ryu, C. Shen and B. Schenke Phys. Rev. C 107, 014904 (2023).

• Collectivity is observed even in small systems at low collision energies.

"Collectivity" in UPC

 UPCs have a similar order of magnitude and trends of collectivity as other previously measured hadronic systems

Taken from Nicole Lewis's slide

Hydrodynamic simulations

• 3D hydrodynamics describes the v_2 $\{2\}$ and hierarchy in γ^* +Pb and p+Pb well.

• The longitudinal flow decorrelation is stronger in the γ^* +Pb than p+Pb, resulting in the v_2 hierarchy between γ^* +Pb and p+Pb. W. Zhao, C. Shen and B. Schenke PhysRevLett.129.252302.

C. Shen and B. Schenke, Phys. Rev. C,105 (2022), 064905. 11

Photon virtuality dependence of flow

The transverse positions of the valence partons are sampled from a 2D Gaussian $P(x, y) \propto exp[-\frac{x^2 + y^2}{2}Q^2]$

- Hydro: larger transverse space of the geometry allows more shape fluctuations and the v_2 are larger.
- CGC: Larger number of independent domains leads to lower v_2 .
- Hydro predicts the opposite trend with Q^2 than the CGC.

W. Zhao, C. Shen and B. Schenke, PhysRevLett.129.252302. Y. Shi, etc.al, Phys. Rev. D 103, 054017 (2021). B. D. Seidlitz. QM2019.

Smallest QGP droplet?

"Collectivity" inside the high multiplicity jet in p-p

- "Collectivity" features inside high multiplicity jets in p-p.
- Final state interaction enhances the v_2 inside high multiplicity jet in p-p. QGP droplet?

"Collectivity" in high multiplicity e^+e^-

- Pythia8 without long range correlations underestimates the v_2 at high multiplicity e^+e^- .
- Smallest QGP droplet?

"Collectivity" in Cold Atom Systems

K. Li, H. F. Song, Y. L. Sun, H. J. Xu and F. Wang, [arXiv:2405.02847 [cond-mat.quant-gas]]

• A universal behavior is observed between the systems of cold-atom gases and heavy-ion collisions.

Collectivity at intermediate p_T in small systems

W. Zhao, Ko, Liu, Qin and Song, Phys.Rev.Lett. 125, 072301 (2020).

• Hydro-Coal-Frag hybrid model well describe the $v_2(p_T)$, Quark coalescence is essential in p-Pb collisions.

Core-Corona model and Strangeness Enhancement

Y. Kanakubo, Y. Tachibana and T. Hirano, PhysRevC.101.024912

- Hydro-like core dominates at high Multiplicity.
- Because of the interplay between core and corona components, it reasonably describes the strangeness of hadron yield ratios to pions from p-p, pA to AA. 18

BUT....

Collectivity in proton-proton collisions

- Models extrapolated from AA do not describe the p-p data. Need better description of 3D geometry.
- The sign of c₂{4} is opposite between hydro calculations and the data in p-p. Maybe transport model could help (X. L. Zhao, Z. W. Lin, L. Zheng and G. L. Ma, PLB.2023.137799).
 20

Applicability of Hydrodynamics

 $T_{\sigma} \sim T_{\tau}^{\gamma} \sim macroscopic scale}$ Z. Wu, B. Fu, S. Zhao, R. Liu and H. Song [arXiv:2307.02995]. C. Chiu and C. Shen, Phys. Rev. C. 103(6), 064901 (2021). Eur.Phys.J.C 82 (2022) 9, 796. Phys. Rev. Lett. 122(12), 122302. Phys. Rev. X. 12(2), 021044 (2022). JHEP 10 (2019) 034.

- Large Knudsen is observed in small systems. Far from equilibrium, causality could be violated
- Use non-equilibrium component: Early time free streaming, effective kinetic theory, or corecorona models, Alternative to Israel-Stewart like theories, BDNK, can help. 21

Hard Probes in small systems

- Model of QGP formation in p+A described by hydrodynamics leads to quenching of hadron spectra that is inconsistent with the p+Pb data.
- In small systems, Centrality determination is critical ! see arXiv: [2308.02650] for soft-hard correlations.

R_{pPb} v.s. $v_2(p_T)$ in pA

- High $p_T R_{pPb}$ v.s. $v_2 (p_T)$ "puzzle" in p-Pb.
- How to understand new CMS measurements of high p_T flow in pPb?

See I. Soudi, A. Majumder, arXiv:2308.14702, 2404.05287 for recently progresses.

Bonus

- No QGP-like J/ψ suppression in Pb+Ne.
- Flow sensitive to shapes of Ne and O
- Searching the QGP at LHCb.

Summary

- Hydrodynamics works well in describing collectivity from Pb+Pb, p+Pb to p+p and $\gamma * +Pb$ collisions.
- There are some issues of applicability of hydrodynamics: accuracy, causality, stability
- Jet quenching does not seem to be observed in small systems. R_{pPb} v.s. $v_2(p_T)$ puzzle in pA.
- Where is the QGP smallest boundary?

See contribution to Quark-Gluon Plasma 6 (World Scientific):

Progress and Challenges in Small Systems

Jorge Noronha, Björn Schenke, Chun Shen, Wenbin Zhao

e-Print: 2401.09208 [nucl-th]

Thanks for Your Attention! Questions ?

Back Up

Event-activity with jet events

- PHTNIX use the direct- photon yields to estimate the number of binary collisions (*N*^{EXP}_{coll}) to reduce the event-selection bias.
- Using a Glauber model Ncoll led to enhancement at low Ncoll is removed now.
- Suppression at large Ncoll remains.

 $v_2(\eta)\{EP\}$

- Our 3D hybrid model reproduces the pseudo-rapidity dependence of $v_2(\eta){EP}$ in d+Au and ³He +Au collisions.
- The elliptic flow in η <1 in p+Au collision is underestimated because of the strong longitudinal decorrelation in our model and potential non-flow in the data.

Final state interactions inside the high multiplicity jet in p-p

- Initial shower partons generated by the Pythia8 with CP5 tune, the formation time:
- Patonic elastic rescattering modeled by ZPC with the parton-parton scatter cross section σ_p .
- Colored hadronization.
- Hadronic rescattering modeled by UrQMD.
- It returns to pythia8 by turning off FSI.

• Initial shower partons generated by the Pythia8 with CP5 tune, the formation time:

$$t_f = \sum_i 2E_i x_i (1 - x_i) / k_{\perp i}^2$$

- Patonic elastic rescattering modeled by ZPC with the parton-parton scatter cross section σ_p .
- Colored hadronization.
- Hadronic rescattering modeled by UrQMD.
- It returns to pythia8 by turning off FSI.

CMS, [arXiv:2312.17103 [hep-ex]].

W. Zhao, Zi-Wei Lin and Xin-Nian Wang [arXiv:2401.13137].

Hadron distributions inside jets in p-p

- Pythia8 gives narrower multiplicity distributions. Next step: include inelastic rescattering.
- Higher multiplicity events have the larger initial emission angles.

CMS, [arXiv:2312.17103 [hep-ex]]. W. Zhao, Zi-Wei Lin and Xin-Nian Wang [arXiv:2401.13137].

Collectivity inside high-multiplicity jets in p-p

- Final state interaction enhances the v_2 inside high multiplicity jet in p-p. QGP droplet?
- We predict that the Δv_2 between different η —gaps increases at $N_{ch}^J > 70$. CMS, [arXiv:2312.17103 [hep-ex]]. W. Zhao, Zi-Wei Lin and Xin-Nian Wang [arXiv:2401.13137].

Collisions inside high-multiplicity jets in p-p

- Low multiplicity jet has large initial spatial anisotropy , but it don't have enough final state interactions to translate into momentum anisotropy
- The high multiplicity jets can have around 100 partonic collision times, which translate initial spatial anisotropy into momentum space.

W. Zhao, Zi-Wei Lin and Xin-Nian Wang [arXiv:2401.13137].