

Open Heavy-Flavor Physics at STAR

Ondřej Lomický (for the STAR Collaboration) Czech Technical University in Prague

2024 RHIC/AGS Annual Users' Meeting

Supported in part by

12th June 2024

Office of Science

- STAR detector
- Heavy quarks
- Heavy-flavor electrons
- Recent results:
 - Inclusive e[±] from open HF hadron decays in p+p @ 200 GeV Phys. Rev. D 105, 032007 (2022)
 - e^{\pm} from open HF hadron decays in Au+Au @ 200 GeV JHEP 06, 176 (2023)
 - Elliptic flow of HFE in Au+Au @ 27 & 54.4 GeV Phys. Lett. B 844, 138071 (2023)
 - Mass ordering of c and b quark energy loss Eur. Phys. J. C 82, 1150 (2022)
 - D_{AA}^0 R_{AA} in isobar collisions @ 200 GeV
 - D^0 -hadron femtoscopic correlations in Au+Au @ 200 GeV
 - D⁰-jet fragmentation function and radial profile in Au+Au @ 200 GeV
 - D⁰-jet angularity modification in central Au+Au @ 200 GeV
- STAR Heavy Flavor program for Runs 23-25
- Summary

The Solenoidal Tracker At RHIC (STAR)

STAR

Credit: https://nsww.org/

- Time Projection Chamber (TPC)
 - Tracking and PID (dE/dx, \vec{p})
 - Acceptance $|\eta| < 1$
- Barrel Electromagnetic Calorimeter (**BEMC**)
 - ${\scriptstyle \bullet }$ High $p_{\rm T}$ electron identification and triggering
 - Acceptance $|\eta|<1$
- Time-of-Flight Detector (TOF)
 - PID (1/β)
 - Acceptance $|\eta|<1$
- Beam-Beam Counter (BBC)
 - Minimum bias trigger
 - Acceptance $3.4 < |\eta| < 5$
- Vertex Position Detector (VPD)
 - Minimum bias trigger
 - Acceptance $4.21 < |\eta| < 5.1$
- Heavy Flavor Tracker (HFT)
 - Topological reconstruction of heavy-flavor hadrons
 - Acceptance $|\eta| < 1$

Heavy quarks (c and b) as probes of QGP

• Heavy quarks: $m_O \gg \Lambda_{QCD}$, $m_O \gg T_{QGP}$ Dominantly produced in initial hard scatterings \rightarrow Ideal probes of QGP Participate in the whole medium evolution • Production cross-sections can be calculated in perturbative QCD 10 Heavy-flavor (HF) 0 0.5 Open heavy-flavor - carry τ [fm/c] one **c** or **b** quark • Quarkonia - $c\overline{c}$ or $b\overline{b}$ **Energy loss** Heavy guark diffusion Nuclear modification factor Thermalization, diffusion (R_{AA}, R_{CP}) • Elliptic flow (v_2) Mass ordering Ondřej Lomický (STAR) 12th June 2024 4/21

- Electrons from semi-leptonic decays of heavy-flavor hadrons
- $\bullet\,$ A $p_{\rm T}{\rm -dependent}$ mixture of electrons from both ${\bf D}$ and ${\bf B}$ hadron decays
- HFE branching ratio (BR) > hadronic decays of open HF hadrons BR
 - $\mathsf{D}^0
 ightarrow \mathsf{K}^- + \pi^+; \ \mathsf{BR} =$ (3.93 \pm 0.04) %
 - $\mathsf{D}^0
 ightarrow \mathsf{e}^+$ + anything; BR = (6.49 \pm 0.11) %
 - Widely used to study heavy quark production

Inclusive e^{\pm} from open HF hadron decays in p+p @ 200 GeV

- Good agreement among the different STAR and PHENIX results
- Precision improved at $p_{\rm T} > 6~{\rm GeV/c}$

$$E\frac{\mathrm{d}^3\sigma}{\mathrm{d}p^3} = \frac{1}{2}\frac{1}{L}\frac{N_{\mathrm{NPE}}}{2\pi p_{\mathrm{T}}\Delta p_{\mathrm{T}}\Delta y} - \left(E\frac{\mathrm{d}^3\sigma}{\mathrm{d}p^3}\right)_{\mathrm{LVMDE \ or \ HDE}}$$

Inclusive e^{\pm} from open HF hadron decays in p+p @ 200 GeV

- Good agreement among the different STAR and PHENIX results
- ${\rm \circ}\,$ Precision improved at $p_{\rm T}>6~{\rm GeV/c}$
- Consistency with the upper limit of the FONLL uncertainty
- Further constraints on theoretical calculations
- Precise reference for R_{AA} measurements for heavy-flavor decayed electrons

STAR: Phys. Rev. D 105, 032007 (2022) STAR: Phys. Rev. D 83, 052006 (2011) PHENIX: Phys. Rev. Lett. 97, 252002 (2006)

$$E\frac{\mathrm{d}^3\sigma}{\mathrm{d}p^3} = \frac{1}{2}\frac{1}{L}\frac{N_{\mathrm{NPE}}}{2\pi p_{\mathrm{T}}\Delta p_{\mathrm{T}}\Delta y} - \left(E\frac{\mathrm{d}^3\sigma}{\mathrm{d}p^3}\right)_{\mathrm{LVMDE \ or \ HDE}}$$

e^\pm from open HF hadron decays in Au+Au @ 200 GeV

$$\boxed{R_{\rm AA} = \frac{1}{N_{\rm coll}} \times \frac{{\rm d}N_{\rm AA}^2/{\rm d}p_{\rm T}{\rm d}y}{{\rm d}N_{\rm pp}^2/{\rm d}p_{\rm T}{\rm d}y}}$$

- Suppression by factor of 2 in central collisions within $3.5 < p_{\rm T} < 8~{\rm GeV/c}$
- Significant energy loss of heavy quarks in QGP

 e^{\pm} from open HF hadron decays in Au+Au @ 200 GeV

- Suppression by factor of 2 in central collisions within $3.5 < p_{\rm T} < 8~{\rm GeV/c}$
- Significant energy loss of heavy quarks in QGP
- A hint of HFE R_{AA} decreasing from peripheral to central collisions
- Stronger parton energy loss in central collisions

12th June 2024

- Consistency with PHENIX results
- Qualitative description of data by Duke and PHSD models

PHENIX: Phys. Rev. C 84, 044905 (2011)

STAR: Phys. Rev. Lett. 98, 192301 (2007)

STAR: JHEP 06, 176 (2023)

Ondřej Lomický (STAR)

Elliptic flow of HFE in Au+Au @ 27 & 54.4 GeV

STAR (27 & 54.4 GeV): Phys. Lett. B 844, 138071 (2023) STAR (200 GeV): Phys. Rev. C 95, 034907 (2017)

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{+\infty} v_n \cos[n(\phi - \psi_n)]$$

- 54.4 GeV significant v_2 of e^{HF}
 - Strong interaction of c quarks with QGP
 - Hints of close to thermal equilibrium with the medium
- 27 GeV v_2 is consistent with 0 within uncertainties
 - Hints of deviation of c quarks from local thermal equilibrium?

Elliptic flow of HFE in Au+Au @ 27 & 54.4 GeV

STAR

• Indication of v_2 of heavier particles drops faster with decreasing collision energy

↓ Mass hierarchv

• PHSD model: The QGP volume and the fraction of energy in the medium to the total collision energy deposited are smaller at low $\sqrt{s_{\rm NN}}$

₩

• The influence of QGP medium on final-state particle dynamics is reduced as the collision energies decrease

STAR: Phys. Rev. C 95, 034907 (2017)

Mass ordering of \boldsymbol{c} and \boldsymbol{b} quark energy loss

STAR: Eur. Phys. J. C 82, 1150 (2022) **PHENIX**: Phys. Rev. C 84, 044905 (2011)

$$\blacksquare R_{\rm AA}^{\rm incl} = \frac{1}{N_{\rm coll}} \times \frac{{\rm d}N_{\rm AA}^2/{\rm d}p_{\rm T}{\rm d}y}{{\rm d}N_{\rm pp}^2/{\rm d}p_{\rm T}{\rm d}y}$$

$$\begin{split} \bigstar R_{\mathsf{A}\mathsf{A}}^{\mathsf{b}\to\mathsf{e}} &= f_{\mathsf{b}}^{\mathsf{A}\mathsf{A}} / f_{\mathsf{b}}^{\mathsf{pp}} \times R_{\mathsf{A}\mathsf{A}}^{\mathsf{incl}} \\ \blacklozenge R_{\mathsf{A}\mathsf{A}}^{\mathsf{c}\to\mathsf{e}} &= (1 - f_{\mathsf{b}}^{\mathsf{A}\mathsf{A}}) / (1 - f_{\mathsf{b}}^{\mathsf{pp}}) \times R_{\mathsf{A}\mathsf{A}}^{\mathsf{incl}} \end{split}$$

 $f_{\rm b}^{\rm AA}$ - fraction measured in Au+Au

- Compatibility with PHENIX measurement
- $\bullet\,$ Larger suppression of c-decay e^\pm than b-decay e^\pm
- Improved precision
- Good agreement with both Duke and PHSD models

Mass ordering of c and b quark energy loss

No States

$$\begin{split} R_{\rm AA}^{\rm b \rightarrow c} &= f_{\rm b}^{\rm AA} / f_{\rm b}^{\rm pp} \times R_{\rm AA}^{\rm incl} \\ R_{\rm AA}^{\rm c \rightarrow e} &= (1 - f_{\rm b}^{\rm AA}) / (1 - f_{\rm b}^{\rm pp}) \times R_{\rm AA}^{\rm incl} \end{split}$$

- $\bullet \ R_{\rm AA}^{{\rm b} \rightarrow {\rm e}} > R_{\rm AA}^{{\rm c} \rightarrow {\rm e}}$
- Significant deviation of both R_{CP} from unity \Rightarrow Evidence of mass ordering at RHIC
- Good agreement with both Duke and PHSD models

$D^0 R_{AA}$ in isobar collisions @ 200 GeV

PRELIMINARY

Motivation

- ${\scriptstyle \bullet}$ Moderate size collision system between Au+Au and Cu+Cu
- Good for studying hot nuclear medium effects dependence on colliding system size

$D^0 R_{AA}$ in isobar collisions @ 200 GeV

- No obvious centrality dependence for the low $p_{\rm T}$ suppression
 - ⇒ Interplay of radial flow, the cold nuclear matter effects, and the charm hadrochemistry
- Suppression in central collisions at $p_{\rm T}>3~{\rm GeV/c}$
 - \Rightarrow Significant energy loss of c quarks in the bulk QCD medium
 - \Rightarrow Centrality dependence of the high $p_{\rm T}$ suppression
- \bullet Good description by a Langevin model from $3~{\rm GeV/c}$
- Similar suppression in isobar and Au+Au collisions despite different $\langle N_{part} \rangle$ at a given energy

STAR: Phys. Rev. C 99, 034908 (2019)

PRELIMINARY

12th June 2024

PRELIMINARY

D⁰-hadron femtoscopic correlations in Au+Au @ 200 GeV

D⁰-K femtoscopic correlations in Au+Au @ 200 GeV

1.3

Correlation function

$$C(\vec{k}^*) = \int S(\vec{r}^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 \mathrm{d}^3 r^*$$

- \vec{k}^* reduced momentum difference of pair in rest frame
- $S(\vec{r}^*)$ source emission function
- $\Psi(\vec{k}^*, \vec{r}^*)$ pair wave function
- $C(k^*)$ for **D**⁰-**K**
 - \Rightarrow No significant correlations
 - Consistent with theoretical model \rightarrow predictions (R > 5 fm)

C(k*) STAR preliminary $D^{0}/\overline{D^{0}}-K^{+/-}$ 1.2 🕂 data 1.1 0.9 NLO + HMChPT, PRD.108.014020 0.8 ---- B = 5 fm ---- B = 2 fm 0.7 Au+Au $\sqrt{s_{NN}}$ = 200 GeV, 0-80% centrality, |y|<1 , p^{D⁰}>1 GeV/c, P_∠<1 GeV/c 0.6 0.5^t 0.05 0.1 0.15 0.2 0.25 0.3

NLO+HMChPT: Phys. Rev. D 108, 014020 (2023)

12th June 2024 15/21

k* (GeV/c)

D^0 - π femtoscopic correlations in Au+Au @ 200 GeV

Correlation function

$$C(\vec{k}^*) = \int S(\vec{r}^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 \mathrm{d}^3 r^*$$

- \vec{k}^* reduced momentum difference of pair in rest frame
- $S(\vec{r}^*)$ source emission function
- $\Psi(\vec{k}^*, \vec{r}^*)$ pair wave function
- $C(k^*)$ for \mathbf{D}^0 - π
 - \Rightarrow No significant correlations
 - Consistent with theoretical model ~ predictions (R > 5 fm)

NLO+HMChPT: Phys. Rev. D 108, 014020 (2023)

12th June 2024 16/21

PRELIMINARY

D^0 -jet fragmentation function in Au+Au @ 200 GeV

D^0 -jet radial profile in Au+Au @ 200 GeV

PRELIMINARY

$$\Delta r = \sqrt{(\eta_{\rm Jet} - \eta_{\rm D^0})^2 + (\phi_{\rm Jet} - \phi_{\rm D^0})^2}$$

- Ratio of radial profiles consistent with $1 \rightarrow$ No hint of D^0 radial profile modification at RHIC energies
- LIDO qualitatively explains radial profile trends, along with ratio of radial profile for central and peripheral events

LIDO, Phys. Rev. C 98, 064901

Outlook: D⁰-jet angularity modification in central Au+Au @ 200 GeV

• D^0 meson tagged jets (anti- k_T , R = 0.4)

• Generalized angularities

- IRC safe observable for parameters $\kappa=1,~\alpha>0.$ It is calculable from pQCD
- Study of modification generalized angularities in HI collisions

Outlook: D⁰-jet angularity modification in central Au+Au @ 200 GeV ALICE. PoS (HardProbes2023) 140 • D^0 meson tagged jets (anti- k_T , R = 0.4) <u>b</u>l2 ALICE Simulation particle PYTHIA 8 Monash 2013 <u>-</u>1- aluon-initiated iet pp. s = 5.02 TeV charged jets, anti- k_{π} , B = 0.4 $\Delta R_{iet,i}$ Jet $10 \le p_{-}^{\text{ch. jets}} < 20 \text{ GeV}/c, |\eta_{-}| \le 0.5$ $5 \le p^{D^{1}} < 20 \text{ GeV}/c, |v| \le 0.8$ p_{T semi-incl} ≥ 5.33 GeV/c R • Higher $\alpha \Rightarrow$ higher sensitivity to Casimir color effects Generalized angularities bly, ALICE Simulation - d - quark-initiated iet PYTHIA 8 Monach 2013 soft /hard collinearity sensitive gluon-initiated iet pp. vs = 5.02 TeV 1 0.15 0.2 0.25 0.3 0.35 0.4 charged jets, anti- k_- , B = 0.40.45 0 ! $\Delta R_{{\sf Jet},i}$) $10 \le p_{\perp}^{\text{ch. jets}} < 20 \text{ GeV}/c, |n| \le 0.5$ $\lambda_{\alpha=1}$ $\lambda_{\alpha}^{\kappa} = \sum \left(\frac{p_{\mathsf{T},i}}{p_{\mathsf{T},\mathsf{Jet}}} \right)$ $5 \le p_{-}^{0^{0}} < 20 \text{ GeV}/c, |y_{-1}| \le 0.8$ • Lower $\alpha \Rightarrow$ p^{leading track} ≥ 5.33 GeV/c 10 higher sensitivity to mass effects • IRC safe observable for parameters $\kappa = 1$, $\alpha > 0$. It is calculable from pQCD • Study of modification generalized angularities 0.02 0.04 0.06 0.08 0 12 0 14 0 16 0 18 02 in HI collisions 12th June 2024 19/21

Ondřej Lomický (STAR)

Outlook: D⁰-jet angularity modification in central Au+Au @ 200 GeV

• D^0 meson tagged jets (anti- $k_{\rm T}$, R = 0.4)

Generalized angularities

- IRC safe observable for parameters $\kappa = 1$, $\alpha > 0$. It is calculable from pQCD
- Study of modification generalized angularities in HI collisions

- $0 \le \lambda_1^1 \le 1$
- Unphysical results caused by background subtraction \rightarrow 2D unfolding based on Pythia simulation needed

12th June 2024

STAR Heavy Flavor program for Runs 23-25

- Detector upgrades:
 - EPD: Event Plane Detector (2018)
 - iTPC: inner Time Projection Chamber (2019)
 - eTOF: endcap Time-Of-Flight (2019)
 - FTS: Forward Tracking System (2022)
 - FCS: Forward Calorimeter System (2022)
- Proposed Run-23 Run-25:

$\sqrt{s_{\sf NN}}$ [GeV]	Species	Sampled Luminosity	Year
200	Au+Au & p+Au	AuAu 32.7 nb^{-1} pAu 0.69 pb^{-1}	2023+2025
200	p+p	$142 \ pb^{-1}$	2024

• Potential enhancement at high $p_{\rm T}$ for the STAR results:

Summary

STAR

HFE in p+p:

- ${\rm \bullet}\,$ Precision improvement at $p_{\rm T}>6~{\rm GeV/c}$
- Precise reference for $R_{\rm AA}$ measurements

HFE in Au+Au:

- Significant energy loss of HQ in QGP
- \bullet Improvement of precision for $p_{\rm T}>6~{\rm GeV/c}$
- Mass ordering of c and b quark energy loss

Elliptic flow:

- 54.4 GeV: significant v_2 of e^{HF}
- 27 GeV: v_2 consistent with 0

Outlook:

$\mathbf{D}^0\text{-jet}$ generalized angularities:

- D⁰-hadron femtoscopic correlations:
 No significant correlations for D-K, D-π, and D-p pairs
 - Consistent with theoretical model predictions ($R \ge 5$ fm)

\mathbf{D}^0 $R_{\mathbf{A}\mathbf{A}}$ in isobar collisions:

- $\, {\rm \bullet} \,$ Suppression in central collisions at $p_{\rm T} > 3 \ {\rm GeV/c}$
- ${\scriptstyle \bullet}$ Similar suppression in isobar and Au+Au collisions
- $\mathbf{D}^0\text{-jet}$ fragmentation function and radial profile:
 - Hard fragmented D⁰-jet yield suppressed in central/midcentral events
 - No hint of D⁰ radial profile modification at RHIC energies

• Study of modification generalized angularities in HI collisions

High statistics p+p and Au+Au datasets from years 2023-2025

This work was supported by a grant from The Czech Science Foundation, grant number: 23-074995