Recent PHENIX Heavy-Flavor Results (incl. c and b flow)

Dan Richford for the PHENIX Collaboration

2024 AGS/RHIC Users Meeting

9:40 a.m., Wednesday, June 12, 2024

Overview

PH^{*}ENIX

Detector

$F_{a o metric a o f}^{I} = \frac{1}{A^{3}N} = \frac{1}{a^{3}N} \int_{a n o f}^{1} \int_{a n o f}^{2} \int_{a n o f}^{n} \int_{a$

2024 RHIC/AGS Users — Richford — PHENIX HF

Broad Study of Light-Flavor Hadrons in Small and Large Systems at Multiple Centrality Classes & Broad Study of Flow in Small Systems at Multiple Centrality Classes

PH^{*}ENIX

Light Flavor in PHENIX

Charged Hadron Production in p+Al, d+Au, 3He+Au, Cu+Au, Au+Au, U+U (PRC 109 054910 [2024])

Nuclear Modification Factor

- Small systems on left, large on right
- Central on top, peripheral on bottom

Comprehensive look at PHENIX Data and Analysis

2-Particle Correlation v₂

v₂ in p+Au, d+Au, 3He+Au (PRC 107 024907 [2024])

v₂ in Small Systems

- Extending prior central result (PRC 105 024901)
- greater v₂ for more peripheral collisions

Comprehensive look at PHENIX Data and Analysis

Midrapidity Heavy-Flavor Measurement

PHKENIX

Heavy Flavor in PHENIX

Flavor Determination Using the VTX, DC/PC, RICH, EMCal

- $|\eta| < 0.35$
- $\Delta \phi = \pi$
- Electron-ID: RICH, EMCal
- Track projection of electrons back to the primary vertex
- ID HF electrons based on DCA_T (lifetime)

Particle (Antip.)	Lifetime (c $ au$, μ m)
$D^0 (\overline{D}^0)$	122.9
$D^{+}(D^{-})$	311.8
$D_s^+ (D_s^-)$	151.2
$\Lambda_{c}^{+} (\overline{\Lambda}_{c}^{-})$	60.7
$B^0 \left(\overline{B^0} \right)$	455.4
$B^{+}(B^{-})$	491.1
$B_s^0 (\overline{B}_s^0)$	454.2
$\Lambda_b^0 (\overline{\Lambda}_b^0)$	441.0

Data

HF IY, c- & b-hadron separation, RAA for Au + Au 200 Gev @ different centrality (PRC 109 044907 [2024])

Improvement over last analysis:

6x more data! Larger active VTX area for tracking Extended p_T results down to 1 GeV/c Reduced systematic uncertainties

Heavy-Flavor Invariant Yield

• Centrality classes scaled for clarity

PH^{*}ENIX

AuAu 200 Gev @ different centrality classes (PRC 109 044907)

Unfolding Result

2024 RHIC/AGS Users — Richford — PHENIX HF

AuAu 200 Gev @ different centrality classes (PRC 109 044907)

Charm-Hadron Invariant Yield

- Centrality classes scaled for clarity
- pp reference scaled by TAA

Suppression for all centrality classes

Greater for more-central events

AuAu 200 Gev @ different centrality classes (PRC 109 044907)

Bottom Hadron Invariant Yield

- Centrality classes scaled for clarity
- pp reference scaled by TAA

Mass ordering

less than charm

Suppression for all centrality classes

• Greater for more-central events

AuAu 200 Gev @ different centrality classes (PRC 109 044907)

$$R_{AA}^{c \to e} = \frac{(1 - F_{AuAu})}{(1 - F_{pp})} R_{AA}^{HF}$$
$$R_{AA}^{b \to e} = \frac{F_{AuAu}}{F_{pp}} R_{AA}^{HF},$$

F_{xx}: *b*-fraction

 R_{AA}^{HF} : anticorrelated *c*-, *b*-inclusive HF hadron R_{AA}

Result

- Large charm suppression above 3.5-4 GeV/c
- Bottom suppression above 1-2 GeV/c

PH^{*}ENIX

Au+Au HF

Heavy-Flavor Flow

HF Electron Flow @ Midrapidity

HF Flow @ Midrapidity (electrons) (Conf.: Nuc.Phys.A 982 663)

- *c-, b*-separation from unfolding leads to flow measurement at midrapidity
- measure v₂ in flavor-enriched
 DCA_T regions

HF Flow @ Midrapidity (electrons) (Conf.: Nuc.Phys.A 982 663)

Charm electron v_2

- Comparison to prior charged hadron measurement
- less elliptic flow below 3 GeV/c

HF Flow @ Midrapidity (electrons) (Conf.: Nuc.Phys.A 982 663)

Bottom electron v_2

- Comparison to prior charged hadron measurement
- less elliptic flow below 4 GeV/c

Muon Detectors in PHENIX

HF Muon Flow @ Forward Rapidity

https://indico.cern.ch/event/1139644/contributions/5456502/

$$v_2^{HF} = \frac{1}{F^{HF}} (v_2^{\mu} - (1 - F^{HF}) v_2^{LF})$$

Wednesday, June 12, 2024

Flavor Determination Using the FVTX, MuTr

- $1.2 < |\eta| < 2.2$
- $\Delta \phi = 2\pi$

 DCA_R

•

- Muon-ID: MuID
- Track projection of muons back to the primary vertex

PH^{*}ENIX

HF Muon Flow

Summary (the end)

PHENIX data and analysis are comprehensive and sophisticated

• Many reaction types from pp to UU, and mixed

HF Production and c-, b-separation result in Au+Au shows significant improvement from prior result

- More statistics, less uncertainty
- Clear suppression of charm and bottom hadrons in QGP, varying by centrality and *n*_{Part}

Clear HF v_2 at midrapidity and forward rapidity

- Agreement between the two probes
- Separate c, b v₂ shows mass-ordering

Dan Richford drichford@gradcenter.cuny.edu richfordd@usmma.edu

Index

Slide Number	Contents	Slide Number	Contents
1	Title	15	R _{AA} for Different Centralities
2	Overview	16	Heavy-Flavor Flow
3	Detector	17	Heavy-Flavor Flow at Midrapidity
4	Centrality in Large Systems	18	<i>c</i> -, <i>b</i> -Separation Leads to v_2
5	Recent Light-Flavor/2PC v ₂ Results	19	Charm-Electron v ₂
6	Light Flavor in PHENIX (R _{AB})	20	Bottom-Electron v_2
7	2-Particle Correlation v_2	21	Muon Detectors in PHENIX
8	Midrapidity Heavy-Flavor Measurement	22	HF Muon v ₂
9	Heavy Flavor in PHENIX	23	Summary
10	Heavy-Flavor Invariant Yield	24	~ This Index ~
11	Unfolding Result	25	Backup Slides
12	Charm-Hadron Invariant Yield		
13	Bottom-Hadron Invariant Yield		
14	R _{AA} at Min-Bias		

Backup Slides

Centrality in Small Systems

Geometric and Momentum Anisotropy and Measure of Event Activity

TOF Particle ID in PHENIX

Particle-ID Using the TOF, DC

PHKENIX

Light Flavor in PHENIX

Charged hadrons of different collision systems @ different centrality classes (PRC 109 054910)

Light-Flavor Invariant Yield

- Small systems (black=pAl, pink=3HeAu)
- Large systems (green=CuAu, red=UU)
- Centrality classes scaled for clarity

2-Particle Correlation v₂

v2 in small systems @ different centrality classes (PRC 107 024907)

2-Particle Correlation v₂

v2 in small systems @ different centrality classes (PRC 107 024907)

Prior Result: Au+Au HF

AuAu 200 Gev @ different centrality classes (PRC 109 044907)

2024 RHIC/AGS Users — Richford — PHENIX HF

PHIENIX Background Comp.: Au+Au HF

AuAu 200 Gev @ different centrality classes (PRC 109 044907)

Simulation of background components

Unfolding: *F_{NP}*: Au+Au HF

AuAu 200 Gev @ different centrality classes (PRC 109 044907)

Unfolding constraint: FNP

PHKENIX

PH*ENIX Comparison to STAR: Au+Au HF

Comp'n to Models: Au+Au HF **PH**^{*}ENIX

2024 RHIC/AGS Users — Richford — PHENIX HF

n_{Part} scaling: Au+Au HF

AuAu 200 Gev @ different centrality classes (PRC 109 044907)

e-vs-μ Comp'n: HF Flow

HF Flow (possible rapidity effect?t)

HF-inclusive Electron v_2 @ Midrapidity

HF-inclusive Muon v_2 @ Forward Rapidity

Muons: *F_{LF}*: HF Flow

HF Flow: Muons (constituent parts of equation)

2024 RHIC/AGS Users — Richford — PHENIA TIF

 \mathbf{M}