Overview of heavy-Flavor Physics - LHC

Preeti Dhankher University of California, Berkeley/Lawrence Berkeley National Lab **RHIC/AGS Annual Users' Meeting 2024** 06/12/2024

Time

Time

~0.5 fm/c

Time

4

Time

Time

Time

Hydrodynamic Hadronization and freez-out expansion ~10 fm/c

The QGP is too small and too short-lived to be probed in a traditional scattering experiment

- $m_{\rm Q} > > \Lambda_{\rm QCD}$ Their production cross section calculable with pQCD
- $m_{\rm O} > > T_{\rm QCD}$

production restricted to initial hard scatterings ($\tau_{\rm HF} \leq \hbar/m \sim 0.05 - 0.1 \, {\rm fm}/c$)

Time

-PUB-567836

Heavy-flavor production in small system

LHCb D meson data: significantly more precise than calculations from older nPDF sets

Heavy-flavor production in small system

significantly more precise than calculations from older nPDF sets

LHCb data currently constrains nPDFs down to $x \sim 10^{-6}$ Places especially stringent bounds on gluon nPDF

Jet probe a wide range of Q²

High energy

14

Hadronization/Confinement

Probing flavor dependence in the QCD shower

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than guarkinitiated showers

Probing flavor dependence in the QCD shower

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than quarkinitiated showers

Mass effects

A harder fragmentation is expected in low energy heavy-quark initiated showers due to the presence of the dead-cone effect

Probing flavor dependence in the QCD shower

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than quarkinitiated showers

Mass effects

A harder fragmentation is expected in low energy heavy-quark initiated showers due to the presence of the dead-cone effect

Mass effects are dominant at low p_T

Challenges of Measurement:

 Determining the dynamic direction of heavy-quark throughout the shower

Challenges of Measurement:

 Determining the dynamic direction of heavy-quark throughout the shower

Solution:

 use declustering procedure with Cambridge/Aachen algorithm

Challenges of Measurement:

 Determining the dynamic direction of heavy-quark throughout the shower

Solution:

 use declustering procedure with Cambridge/Aachen algorithm

Cambridge/Aachen clusters constituents based solely on their angular distance from one another

 \rightarrow matches QCD

Challenges of Measurement:

 Determining the dynamic direction of heavy-quark throughout the shower

Solution:

 use declustering procedure with Cambridge/Aachen algorithm

Cambridge/Aachen clusters constituents based solely on their angular distance from one another

 \rightarrow matches QCD

Declustring: Follow the branch with the D meson to identify the c-branch

ratio of the splitting angle (θ) distribution for D^0 -tagged vs. inclusive jets, vs. E_{Radiator}

\	1	$dn^{D^0 jets}$, 1	dn ^{inclusive} jets	
) —	N^{D^0jets}	$dln(1/\theta)$	Ninclusive jets	$dln(1/\theta)$	$k_{\rm T}, E_{\rm Radiator}$

PYTHIA v.8

SHERPA SHERPA LQ/inclusive no dead-cone limit

- ALICE data PYTHIA v.8 LQ/inclusive no dead-cone limit PYTHIA v.8
- SHERPA SHERPA LQ/inclusive no dead-cone limit

 $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$

28

 $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$

Jet Angularities : $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$ α

Jet Angularities : $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$ α

Jet Angularities : $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$

Jet Angularities : $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$

- charm distribution shifted to lower values of $\lambda_{\alpha=1}$
 - → **Dead-cone/mass**
 - effects

Jet Angularities : $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$

- charm distribution shifted to lower values of $\lambda_{\alpha=1}$
 - → **Dead-cone/mass**
 - effects

34

Flavor dependencies in QCD shower

35

Jet Angularities :

$$\left(\frac{\Delta R_{\text{jet,i}}}{p_{\text{T,jet}}}\right) \left(\frac{\Delta R_{\text{jet,i}}}{R_{\text{jet}}}\right)^{\alpha}$$

- charm distribution shifted to lower values of $\lambda_{\alpha=1}$
 - → **Dead-cone/mass**
 - effects

 $p_{\mathrm{T,jet}}$

Flavor dependencies in QCD shower

Probing quark-gluon plasma (QGP) with heavy flavor

Time

Spin alignment of D*+ and J/ ψ mesons

Non-central collisions

• Large angular momentum due to the medium rotation

Huge initial magnetic field (B $\sim 10^{16}$ T) generated in the early state of the collision

Spin alignment of D*+ and J/ ψ mesons

Charm formation time ~ 0.1 fm/c comparable to the time scale when B is maximum Expected to be more sensitive to the magnetic field \rightarrow excellent probes to study induced B field!

Non-central collisions

• Large angular momentum due to the medium rotation

Huge initial magnetic field $(B \sim 10^{16} \text{ T})$ generated in the early state of the collision

Spin alignment of D*+ and J/ ψ mesons

• Large angular momentum due to the medium rotation

Huge initial magnetic field $(B \sim 10^{16} \text{ T})$ generated in the early state of the collision

Charm formation time ~ 0.1 fm/c comparable to the Expected to be more sensitive to the magnetic field \rightarrow excellent probes to study induced B field!

Polarization of charm quark transferred to hadrons

41

 $\frac{dN_{AA}/dp_{T}}{< T_{AA} > d\sigma_{pp}/dp_{T}}$ R_{AA}

42

Dead cone effect: gluon radiation suppressed at angles smaller than $\theta < m/E$

Reduced suppression for HF hadrons

Probe modified by the medium!!

$$R_{AA} = \frac{dN_{AA}/dp_{T}}{< T_{AA} > d\sigma_{pp}/dp_{T}}$$

Dead cone effect: gluon radiation suppressed at angles smaller than $\theta < m/E$

Consistent with mass dependent hierarchy!!!

Probe modified by the medium!!

$$R_{AA} = \frac{dN_{AA}/dp_{T}}{< T_{AA} > d\sigma_{pp}/dp_{T}}$$

Extended to D0-tagged jet measurement and compared with inclusive jet to probe flavor dependencies!!

Probing quark-gluon plasma (QGP) with heavy flavor

Time

Collective flow

Distribution of emitted particles can be written as Fourier formula:

 Ψ_n : Azimuthal angle of Event Plane φ : Azimuthal angle of emitted particles v_n : Different flow harmonics v_2 : Elliptic flow

• Significantly positive *v*₂ observed for charm hadron

 \rightarrow charm flows collectively with the medium

 \rightarrow Diffusing charm quark moves with expanding medium

• Significantly positive v₂ observed for charm hadron

 \rightarrow charm flows collectively with the medium

 \rightarrow Diffusing charm quark moves with expanding medium

$$1.5 < 2\pi D_{\rm s} T_c < 4.5 \rightarrow \tau_{\rm charm} = 3 - 1.5$$

ATLAS, PLB 829 (2022) 137077

positive v_2 observed for μ from charm and beauty.

beauty V_2 < charm V_2

 \rightarrow consistent with mass hypothesis.

ATLAS, PLB 829 (2022) 137077

positive v_2 observed for μ from charm and beauty.

beauty $v_2 < \text{charm } v_2$

 \rightarrow consistent with mass hypothesis.

 Simultaneous fitting the models to describe R_{AA} and v_2 of muons from HF hadron decays

 \rightarrow Charm: $2\pi D_{s}T_{c} = 2.23$, Bottom: $2\pi D_{s}T_{c} = 2.79$

 \rightarrow Compatible results between ALICE and ATLAS

• Λ_c^+/D^0 ratio is expected to increase in the presence of charm recombination in the QGP.

• Λ_c^+/D^0 ratio is expected to increase in the presence of charm recombination in the QGP. • Λ_c^+/D^0 ratio in PbPb shows moderate enhancement from pp at intermediate p_{T} within uncertainties.

 \rightarrow Hadronization is modified already in pp collisions

 \rightarrow Very different than e^+e^-

Good agreement between ALICE and CMS data!

• Λ_c^+/D^0 ratio is expected to increase in the presence of charm recombination in the QGP. • Λ_c^+/D^0 ratio in PbPb shows moderate enhancement from pp at intermediate p_{T} within uncertainties.

 \rightarrow Hadronization is modified already in pp collisions

 \rightarrow Very different than e^+e^-

40 ALICE, arXiv:2211.14032 CMS, arXiv:2307.11186

Hadronization of charmed hadrons Described by models based on Colour reconnection beyond the leading color • (ALICE) *PbPb 5.02 TeV* 0-10% lyl < 0.5 ii) Quark-coalescence (ALICE) pp 5.02 TeV lyl < 0.5</p> (CMS) pp 5.02 TeV lyl < 1</p> iii) Statistical hadronisation model (SHM) with 1.5 augmented set of charm-baryon excited states ALICE pp, $\sqrt{s} = 5.02 \text{ TeV}$ + y |y| < 0.5—— This paper 0.8 PYTHIA 8 (Monash) PYTHIA 8 (CR Mode 2) 0.6 Catania, fragm.+coal. SH model + RQM 0.5 QCM 0.2 20 30 10 40 ALICE, arXiv:2211.14032

Good agreement between ALICE and CMS data!

CMS, arXiv:2307.11186

ALICE, arXiv:2211.14032

5

10

Good agreement between ALICE and CMS data!

• Λ_c^+/D^0 ratio is expected to increase in the presence of charm recombination in the QGP. • Λ_c^+/D^0 ratio in PbPb shows moderate enhancement from pp at intermediate p_{T} within uncertainties.

 \rightarrow Hadronization is modified already in pp collisions

 \rightarrow Very different than e^+e^-

• Modification of the Λ_c^+/D^0 ratio in p-Pb collisions

 \rightarrow Radial-flow like effect or q recombination

Good agreement between ALICE and CMS data!

• Λ_c^+/D^0 ratio is expected to increase in the presence of charm recombination in the QGP. • Λ_c^+/D^0 ratio in PbPb shows moderate enhancement from pp at intermediate p_{T} within uncertainties.

 \rightarrow Hadronization is modified already in pp collisions

 \rightarrow Very different than e^+e^-

• Modification of the Λ_c^+/D^0 ratio in p-Pb collisions

 \rightarrow Radial-flow like effect or q recombination

 CMS: Similar modification in Pb—Pb collisions, increasing with centrality

Similar behaviour at forward rapidity, but lower in absolute value than mid-rapidity

Similar behaviour at forward rapidity, but lower in absolute value than mid-rapidity Modification of ratio mostly in low multiplicity collisions No evidence of modification in p-Pb collisions by CMS, but compatible with ALICE results

Hadronization of beauty hadrons

- Λ_h^0/B^0 shows modification as a function of multiplicity!!
- \rightarrow Approaches e⁺e⁻ value at very low multiplicity
- \rightarrow Saturates at high multiplicity

- Abundant production of strange quarks in the QGP.
- Recombination → strange hadrons expected to be enhanced
- Strange-to-nonstrange ratio higher in Pb -Pb than pp in charm sector

First measurement of excited D_S production as a function of multiplicity

- Ratio to the ground state does not show multiplicity dependence
- Larger data samples needed

• No evidence of multiplicity dependence of D_s^+/D^0 in pp collisions

• First observation of D_{S}^{+}/D^{+} increase as a function of multiplicity in p – Pb collisions at forward and backward rapidities

➡ Steeper increase at backward compared to forward rapidity → because of higher average 64 multiplicity?

65

- No evidence of multiplicity dependence at midrapidity
- Compatible with forward rapidity measurement, tension with backward rapidity
- Steeper slope for backward rapidity probably due to different absolute multiplicity in different rapidity regions not considered in self normalized multiplicity
- Crucial to plot the D_S^+/D ratio as a function of the charged-particle density $dN_{ch}/d\eta$

Summary

- 0 "journey" into the medium until the formation of heavy-flavour hadrons.
 - Heavy quark production
 - Heavy quark interaction
 - Energy loss measurement
 - Flow measurement
 - modification of hadronization mechanisms.

Many open question still need to be addressed with Run 3 data.

- Push experimental tests of pQCD with higher precision HF/HF-jet studies.
- $^{\circ}$ Extend the studies to Beauty and to higher $p_{\rm T}$
- Systematically probe non-perturbative effects such as hadronization
- QCD dynamics

Detailed insight on the QGP in heavy ion system using heavy quark from their production to their

 Extension of program to heavy-ion collisions to characterize in-medium interactions in the quarkgluon plasma formed in heavy-ion collisions and distinguish the QGP behavior from the in-vacuum

Heavy quark production in pp collisions

(non perturbative)

Charm quark hadronization from the medium

• Formation of a peak structure at intermediate p_{T}

Tuning the flavor dependence by varying alpha $\lambda_{\alpha}^{\kappa=1} = \sum_{i} z_{i} \theta_{i}^{\alpha}$

• How much of this modification is due to the D0 jet being a quark jet versus being a HF jet?

- become more similar \rightarrow cleaner sensitivity to Casimir colour effects
- mass effects are more prominent

With increasing α the impact of mass effects is reduced : D0-tagged and quark-initiated distributions

^o At lower α where the core of the jet has a higher weight \rightarrow large angle radiation has a lower weight,

Scanning the angular profile of jets

to converge

Higher $\alpha \rightarrow$ more weight on wide angle emissions

i∈jet

POWLANG, BAMPS el, TAMU: do not include radiative energy loss determination of onset of radiative contributions by deviations from experimental data at a certain p_T

• PHSD, MC@sHQ+EPOS2, BAMPS el.rad, LBT: both elastic and radiative contributions are included

• Quark recombination: in TAMU, POWLANG, PHSD, MC@sHQ, LBT, Catania

• Significantly positive v₂ observed for charm hadron

 \rightarrow charm flows collectively with the medium

 \rightarrow Diffusing charm quark moves with expanding medium

