

Quarkonia Physics at STAR

Wei Zhang (For the STAR Collaboration)

South China Normal University

Wei Zhang @ RHIC-AGS User's Meeting

Relativistic Heavy Ion Collisions

Good Probe of the Quark-Gluon Plasma (QGP)

Heavy Quarkonia

- Produced in initial hard scatterings (<0.1fm/c)
- $m_c, m_b >> T_{QGP}$
- Experiences the entire evolution of QGP

Dissociation — Results in a decrease in quarkonia yield

Credit: Q. Yang

$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T} = \frac{1}{\langle T_{AA} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T}$$

 $R_{AA} < 1$ suppression $R_{AA} = 1$ no net medium effects $R_{AA} > 1$ enhancement

Sequential Suppression

sequential suppression pattern

S. Diagl, P. Petreczky and H. Satz, PLB514, 57 (2001)

> Other effects:

- Regeneration
- Cold nuclear matter effects
- Feed down

- Systematically analyze
 - Energy dependence
 - P_T, centrality dependence
 - System size dependence
 - Binding energy dependence
 - Polarization

the Solenoidal Tracker at RHIC

Time Projection Chamber
Tracking, momentum and energy loss Acceptance: |η| < 1; 0 ≤ φ < 2π

Time Of Flight Detector Time of flight, particle identification Acceptance: $|\eta| < 1$; $0 \le \phi < 2\pi$

Barrel ElectroMagnetic Calorimeter e^{\pm} trigger and identification Acceptance: $|\eta| < 1; 0 \le \phi < 2\pi$

Muon Telescope Detector

 μ^{\pm} trigger and identification Acceptance: $|\eta| < 0.5, \sim 45\%$ in φ

Au+Au Collisions at STAR

- Beam Energy Scan II
 - 10-20 times higher statistics than BES-I
 - Unique opportunity to study the collision energy dependence
- \blacktriangleright Collision energy dependence of J/ ψ production
 - Au+Au collisions at $\sqrt{s_{NN}} = 14.6, 19.6, 27 \text{ GeV}$
 - Smaller regeneration effect

Events (M)

Energy Dependence of J/ ψ R_{AA}

X. Zhao, R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication). L. Kluberg, Eur. Phys. J. C 43 (2005) 145. NA50 Collaboration, Phys. Lett. B 477 (2000) 28.

- > Data at $\sqrt{s_{NN}} = 14.6$, 19.6 and 27 GeV follow global trend
- > No significant energy dependence of $J/\psi R_{AA}$ in central collisions is observed within uncertainties up to 200 GeV
- Regeneration dominates at LHC energies
- Model qualitatively describes the observed energy dependence

ALICE Collaboration, Phys. Lett. B 734 (2014) 314 STAR Collaboration, Phys. Lett. B 771 (2017) 13-20 STAR Collaboration, Phys. Lett. B 797 (2019) 134917 ALICE Collaboration, Nucl. Phys. A 1005 (2021) 121769

J/ ψ R_{AA} vs. p_T in Au+Au Collisions

▶ Low p_T suppression, R_{AA} increases with p_T for √s_{NN} = 14.6, 19.6 and 27 GeV
 ▶ No significant p_T dependence at 200 GeV

J/ ψR_{AA} vs. $\langle N_{part} \rangle$ in Au+Au Collisions

Hint of decreasing trend as a function of centrality

> R_{AA} shows no significant energy dependence at RHIC for similar <N_{part}>.

Zr+Zr & Ru+Ru Collisions at STAR

> High statistics enables measurements of:

- J/ψ production with high precision
- Sequential suppression of J/ ψ , ψ (2S), Υ (1S), Υ (2S)
- J/ψ polarization

- ➤ A moderate size collision system
 - Unique opportunity to study the system size dependence

 $J/\psi R_{AA}$ vs. $\langle N_{part} \rangle$ at RHIC

- > No significant collision system dependence observed at RHIC
- > Driven by overlap size rather than collision geometry

J/ ψR_{AA} vs. p_T in Zr+Zr & Ru+Ru Collisions

STAR Collaboration, Phys. Lett. B 797 (2019) 134917

- ➤ Highest precision measurement at RHIC to date
- Significant suppression observed in central collisions
- > Consistent with Au+Au results at similar $\langle N_{part} \rangle$ range

bar, $\sqrt{s_{\text{NN}}} = 200 \text{ GeV}$ $\Rightarrow \quad Background (test)$ $\Rightarrow \quad \psi(2S) \text{ signal (test)}$ $= \quad 20000 - p_{T}^{2}: 0.2 - 8.0 \text{ GeV/c}$ Centrality: 0 - 80%

$\psi(2S)$ Signal in Zr+Zr & Ru+Ru Collisions

A machine learning method is employed to reconstruct the $\psi(2S)$ signal

- Combinatorial background subtracted (mixed event)
- Fit with ψ(2S) signal lineshape (simulation) and residual background (linear function)

$\psi(2S)$ to J/ ψ Ratio in Zr+Zr & Ru+Ru Collisions

> First observation of charmonium sequential suppression in heavy-ion

collisions at RHIC $(3.5\sigma, 0-80\%)$

> Hint of ratio decreases towards central collisions

Double Ratio

 $\gg \psi(2S)$ over J/ ψ double ratio is smaller than that in p+A collisions

Double Ratio

pp reference is the average of measurements in p+p(d) by NA51, ISR and PHENIX

PHENIX, Phys.Rev.Lett. 111 (2013) PHENIX, Phys.Rev.D, 85,092004 (2012) NA50, Eur.Phys.J.C 48, (2006) E772, Phys.Rev.Lett. 66 (1991) 133-136

 $\gg \psi(2S)$ over J/ ψ double ratio is smaller than that in p+A collisions

Centrality dependence trend seems to be more similar to that at SPS than at LHC

 $\psi(2S)$ to J/ ψ Ratio vs p_{T}

- $\gg \psi(2S)$ to J/ ψ ratio increases with p_T in isobaric collisions
- ➤ Significantly lower than that in p+p and p+A collisions at p_T < 2 GeV/c</p>

STAR, Phys.Rev.D 100 (2019) PHENIX, Phys.Rev.D, 85,092004 (2012) HERA-B, Eur.Phys.J.C 49 (2007) E789, Phys.Rev.D 52 (1995) 1307, 1995.

ΥR_{AA} vs. $\langle N_{part} \rangle$ in Au+Au Collisions

First measurement of suppression of three Υ states separately at RHIC > 3σ difference for $\Upsilon(1S)$ and $\Upsilon(3S)$

ΥR_{AA} vs. $\langle N_{part} \rangle$ in Zr+Zr & Ru+Ru Collision **STAR**

STAR, Phys. Rev. Lett. 130 (2023) 112301

≻ Hint of sequential suppression pattern

- > Isobar covers lower $\langle N_{part} \rangle$ range than Au+Au
- R_{AA} shows a smooth trend from isobar to Au+Au collisions

- Study J/ψ production mechanism in heavyion collisions
- $> J/\psi$ polarization could be modified by QGP
 - Suppression of feed down
 - Regeneration

 J/ψ polarization can be extracted via the angular distribution of the decayed positron:

 $W(\cos\theta,\phi) \propto 1 + \lambda_{\theta} \cos^2\theta + \lambda_{\phi} \sin^2\theta \cos^2\phi + \lambda_{\theta\phi} \sin^2\theta \cos\phi$

$$\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{\phi}}$$

Faccioli et al, EPJC 69 (657-673), 2010

Helicity frame (HX) and Collins-Soper frame (CS)

J/ ψ Polarization Parameters vs. $p_{\rm T}$

- > $\lambda_{\theta}, \lambda_{\phi}$ consistent with zero in HX and CS frames
- > overall no significant $p_{\rm T}$ dependence in either HX or CS

J/ψ Polarization Parameters: HI vs. pp

STAR, Phys.Rev.D 102 (2020) 9, 092009

 $\succ \lambda_{\theta}, \lambda_{\phi}$ consistent with p+p results within uncertainties

Wei Zhang @ RHIC-AGS User's Meeting

J/ψ Polarization Parameters vs. Centrality

No significant centrality dependence is observed

> λ_{inv} are consistent between HX and CS frames within uncertainty as expected

Summary

- > Significant suppression of charmonia and bottomonia in central heavy-ion collisions
- \succ No significant collision energy dependence of J/ ψ R_{AA} with BES-II data
- > J/ ψ R_{AA} increases with p_T , hint of decreasing with centrality
- ► No significant dependence of the J/ ψ R_{AA} on the collision system size is observed when comparing isobar and Cu+Cu to Au+Au collisions
- > First observation of sequential suppression for charmonia and bottomonia at RHIC;
- > First measurement of J/ ψ polarization in heavy-ion collisions at RHIC, consistent with zero and p+p results

Outlook

Run 23-25, ~18B minimum bias Au+Au events;
 high statistics p+p samples

Number Events/ Year Species $\sqrt{s_{\rm NN}}$ Sampled Luminosity (GeV) $142 \text{ pb}^{-1}/12 \text{w}$ 2002024 p+p $0.69 \text{ pb}^{-1}/10.5 \text{w}$ 200 2024 p+Au $18B / 32.7 \text{ nb}^{-1}/40 \text{w}$ 200Au+Au 2023 + 2025

- ➢ Au+Au 200 GeV
 - Sequential suppression studies $\Upsilon(1S)$, $\Upsilon(2S)$
 - Opportunity to measure ψ (2S) in Au+Au collisions

drupal.star.bnl.gov/STAR/system/files/STAR_BUR_Runs24_25_2023.pdf

Back up

Raw J/ ψ Signal

$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T}$$

- The function used to fit UL-Sign (UL) consists of
 - J/ψ template
 - combinatorial background
 - residual background
- Extracted combinatorial background shape from mixed-event UL-Sign.
- Residual background parameterized using a firstorder polynomial.

2024/6/12

Inclusive J/ ψ Invariant Yields

$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T}$$

Inclusive J/ ψ invariant yields as a function of p_T at mid-rapidity (|y| < 1) in Au+Au collisions at $\sqrt{s_{NN}} = 14.6$, 19.6, 27 GeV.

Wei Zhang @ RHIC-AGS User's Meeting

Systematic Uncertainty

Systematic uncertainty from J/ ψ yield measurements Source:

Track quality cuts

- *n*HitsFit
- *n*HitsDedx
- Dca (cm)

Signal extraction

- J/ψ templates
- Fitting range
- Residual background function form
- Combinatorial background function form
- Bin Width

Electron Identification cuts

- $n\sigma_e$ efficiency
- $1/\beta$ efficiency
- TOF Matching efficiency

Analyzed bin	27 GeV	19.6 GeV	14.6 GeV
0-80%	12.4 %	11.2 %	13.2 %
0-20%	13.2 %	12.3 %	13.1 %
20-40%	12.1 %	11.5 %	15.0 %
40-60%	11.5 %	11.6 %	
60-80%	14.4 %	16.1 %	13.5 %
0-1GeV/c	12.8 %	12.5 %	14.6 %
1-2GeV/c	14.4 %	11.6 %	12.7 %
2-4GeV/c	11.6 %	15.0 %	24.1 %

$\sqrt{S_{NN}}$ (GeV)	σ _{inelastic} (mb)	Error
200	43.3960	0.766915
27	32.9876	0.163660
19.6	32.0776	0.137064
17.3	31.7791	0.131443
14.6	31.4194	0.125273
11.5	30.9905	0.124518
9.2	30.6478	0.130914

Data from PDG (Particle Data Group) : https://pdg.lbl.gov/2022/hadronic-xsections/

J/ψ polarization in isobaric collisions

Angular distribution of the decayed leptons:

 $W(\cos\theta,\phi) \propto 1 + \frac{\lambda_{\theta}}{\cos^2\theta} + \frac{\lambda_{\phi}}{\sin^2\theta} \cos^2\phi + \frac{\lambda_{\theta\phi}}{\sin^2\theta} \sin^2\theta \cos\phi$

Helicity frame(HX) Collins-Soper frame(CS)

