

Fluctuations in BES

Yige Huang for the STAR Collaboration

Supported in part by

Central China Normal University GSI Helmholtzzentrum für Schwerionenforschung

12.06.2024

RHIC/AGS Annual Users' Meeting 2024

Critical End Point and Beam Energy Scan

- STAR Experiment
- Selected Results
- Summary and Outlook

Critical End Point and Beam Energy Scan

- 2. Lattice QCD: smooth crossover at low μ_B ;
- 3. First order phase transition at high μ_B and low temperature region as well as Critical End Point are conjectured

Beam Energy Scan Program

- 1. By tuning beam energy and centrality, we can vary the μ_{R} and T;
- 2. Measurements of various observables characterize the phase diagram: particle yields, collective behaviors, baryon **fluctuations**, ...
- 3. Map out the crossover and/or first order phase boundary, and search for critical end point

RHIC/AGS Annual Users' Meeting 2024

SIS CSF

Quark-Gluon Plasma

X. Luo, S. Shi, N. Xu, Y. Zhang: Particles 3 (2020) 2, 278-307

Beam Energy Scan Phase-II: Data Sets

Au+Au Collisions at RHIC							
Collider Runs				Fixed-Target Runs			
	√ S_{NN} (GeV)	#Events	μ_B		√ S_{NN} (GeV)	#Events	μ_B
1	200	380 M	25 MeV	1	13.7 (100)	50 M	280 MeV
2	62.4	46 M	75 MeV	2	11.5 (70)	50 M	316 MeV
3	54.4	1200 M	85 MeV	3	9.2 (44.5)	50 M	372 MeV
4	39	86 M	112 MeV	4	7.7 (31.2)	260 M	420 MeV
5	27	585 M	156 MeV	5	7.2 (26.5)	470 M	440 MeV
6	19.6	595 M	206 MeV	6	6.2 (19.5)	120 M	490 MeV
7	17.3	256 M	230 MeV	7	5.2 (13.5)	100 M	540 MeV
8	14.6	340 M	262 MeV	8	4.5 (9.8)	110 M	590 MeV
9	11.5	257 M	316 MeV	9	3.9 (7.3)	120 M	633 MeV
10	9.2	160 M	372 MeV	10	3.5 (5.75)	120 M	670 MeV
11	7.7	104 M	420 MeV	11	3.2 (4.59)	200 M	699 MeV
				12	3.0 (3.85)	260 + 2000 M	750 MeV

• $3 < \sqrt{s_{NN}} < 200 \text{ GeV} \rightarrow 750 > \mu_B > 25 \text{ MeV}$: wide μ_B coverage; • Most precise data to map the QCD phase diagram!

- Critical End Point and Beam Energy Scan
- > STAR Experiment
- Selected Results
- Summary and Outlook

STAR Detector System

endcap Time-Of-Flight

Event Plane Detector

- ✓ Large, uniform acceptance
- Excellent particle identification
- ✓ Modest rates

12.06.2024

inner Time Projection Chamber

RHIC/AGS Annual Users' Meeting 2024

Major Upgrades for BES-II

iTPC

- 1. Improves dE/dx
- 2. Extends η coverage from 1.0 to 1.6
- 3. Lowers p_T cut-in from 125 to 60 MeV/c
- ✓ Ready in 2019

eTOF

- 1. Forward rapidity coverage
- 2. PID at η = -1.05 to -1.5
- 3. Borrowed from FAIR-CBM
- ✓ Ready in 2019

Full EPD has been installed

EPD

- 1. Improves trigger
- 2. Better centrality and event plane measurements
- ✓ Ready in 2018

RHIC/AGS Annual Users' Meeting 2024

Improvements

- Critical End Point and Beam Energy Scan
- STAR Experiment
- Selected Results
- Summary and Outlook

Selected Results: Net-proton Cumulants from BES-I

STAR: Phys.Rev.Lett. 128 (2022) 20, 202303

M. Stephanov: Phys.Rev.Lett. 107 (2011) 052301

$$C_{1} = \langle N \rangle \equiv \mu \text{ [mean]}$$

$$C_{2} = \langle (N - \mu)^{2} \rangle \equiv \sigma^{2} \text{ [variance]}$$

$$S\sigma = C_{3}/C_{2}$$

$$C_{3} = \langle (N - \mu)^{3} \rangle$$

$$\kappa\sigma^{2} = C_{4}/C_{2}$$

$$C_{4} = \langle (N - \mu)^{4} \rangle - 3 \langle (N - \mu)^{2} \rangle^{2}$$

- 1. Cumulants of conserved charge distributions relate to correlation length of the system: $C_2 \sim \xi^2, C_4 \sim \xi^7$
- 2. Also related to susceptibilities:

$$\frac{C_{4,q}}{C_{2,q}} = \frac{\chi_{4,q}}{\chi_{2,q}}, \ q = B, S, Q$$

- 3. Non-monotonic energy dependence of C_4/C_2 is predicted near critical region;
- 4. BES-I and 3 GeV FXT results indicate hint of nonmonotonic trend but need confirmation with more precise measurement

Selected Results: Net-proton Cumulants in p+p collisions at 200 GeV

- 1. Measurement of net-proton cumulant ratios up to 6th order from p+p collision at $\sqrt{s_{NN}} = 200 \text{ GeV}$ is below Skellam expectation;
- 2. Smoothly connects to the results from Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$;
- 3. Observed trend and sign in C_5/C_1 and C_6/C_2 measurements within large uncertainty may indicate the creation of QGP in high multiplicity events of p+p collisions

Selected Results: Baryon Strangeness Correlation

- 1. The C_{BS} is proposed as a diagnostic of strongly interacting matter, which behaves distinctly under different degree of freedom;
- 2. Peripheral collisions can be well described by UrQMD;
- 3. For central collisions:
 - 1) At high energy is consistent with FRG and LQCD, and at low energy is reproduced by UrQMD;
 - 2) Largest deviation at 19.6 GeV is found which is more than 5σ

Critical End Point and Beam Energy Scan

STAR Experiment

Selected Results

Precision measurements of cumulants from BES-II

Summary and Outlook

Centrality Definition

- 1. Multiplicity of charged particles detected by STAR detector is used for centrality definition;
- 2. Protons and antiprotons are excluded to avoid selfcorrelation;
- 3. Larger acceptance and greater multiplicity lead to better centrality resolution:
 - RefMult3X > RefMult3 > RefMult3 (BES-I)
 w/o iTPC

RefMult3

Measured charged particle multiplicity excluding protons and antiprotons within $|\eta| < 1.0$

RefMult3X

Measured charged particle multiplicity excluding protons and antiprotons within $|\eta| < 1.6$

RHIC/AGS Annual Users' Meeting 2024

Proton Acceptance, PID and Purity

• Identified protons in selected kinetic region are used for analysis:

 $0.4 < p_T < 2.0$ GeV/c and |y| < 0.5

- $0.4 < p_T < 0.8$ GeV/c (PID using **TPC**) $|n\sigma| < 2$ from dE/dx measurement
- 0.8 < p_T < 2.0 GeV/c (PID using **TPC+TOF**) in addition to TPC, mass square from TOF is used: 0.6 < m^2 < 1.2 GeV²/ c^4
- ✓ Bin-by-bin proton/antiproton purity > 99%

Net-proton Number Distribution

1. Efficiency uncorrected net-proton number distribution from BES-II;

2. Mean increases with decreasing collision energy: effect of baryon stopping;

3. Larger width makes larger statistic uncertainty:

• Stat. error
$$C_r \propto \frac{\sigma^r}{\sqrt{N}}$$

Centrality Dependence: Net-proton Cumulants

Centrality Dependence: Net-proton Cumulant Ratios

Average Number of Participant Nucleons $\langle N_{part} \rangle$ STAR New Result

- 1. Smooth variation across centrality and collision energy is seen from BES-II measurement;
- Better centrality resolution leads to lower cumulant ratios (especially for mid-central collisions): Calculations from RefMult3X < RefMult3 < RefMult3 (BES-I)
- 3. For 0-5% most central collisions, weak effect of centrality resolution of C_4/C_2 is observed

Energy Dependence and Model Comparison

Hydro

 C_2/C_1 and C_3/C_2 change smoothly as a function of 1. collision energy; $\sqrt{s_{NN}}$ e_{2}/e_{1} E_{2}/E_{2} C_{4}/C_{2} decreasing $\sqrt{s_{NN}}$;

- 3. Proton factorial cumulant ratios deviate from Poisson baseline at 0;
- 4. Antiproton's κ_3/κ_1 and κ_4/κ_1 are close to 0;
- 5. Non-CP models are used for comparison:
 - Their trends follow STAR data qualitatively;
 - Quantitative differences exist between them 2) and STAR measurements
 - Hydro: hydrodynamical model

V. Vovchenko et. al.: Phys. Rev. C 105 (2022) 1, 014904

- HRG CE: thermal model with canonical treatment of baryon charge P. Braun-Munzinger et. al.: Nucl.Phys.A 1008 (2021) 122141
- UrQMD: hadronic transport model

M. Bleicher et. al.: J.Phys.G 25 (1999) 1859-1896

✓ Baryon number conservation is included in all models

RHIC/AGS Annual Users' Meeting 2024

200

 $\sim C_4 L_{42} C_2$ $\sim Most central C_4 / C_2 shows minimum around 20 GeV cqmparing to non-CP models and 70-80% collisions$

- 1) Maximum deviation: $3.2 \sqrt[4]{3} \sqrt[4]{3} = 1.9 + 9.5 + 5.4 + 4.2 + 2.2 \sigma^2 \sigma^2$ 1) Maximum deviation: $3.2 \sqrt[4]{3} \sqrt[4]{3} = 1.9 + 9.5 + 5.4 + 4.2 + 2.2 \sigma^2 \sigma^2$
- 2) Overall deviation from $\sqrt{s_{NN}} = 7.7$ to 27 GeV: 1.9 5.4 σ (1.4 2.2 σ at BES-I)

- Critical End Point and Beam Energy Scan
- STAR Experiment
- Selected Results
- Summary and Outlook

Summary and Outlook

Summary

- 1. From p+p collisions at 200 GeV data set, observed net-proton cumulant ratios C_5/C_1 and C_6/C_2 approach negative values in the highest-multiplicity events may indicate the formation of thermalized QCD matter
- 2. Baryon strangeness correlation are measured, deviation from references reaches maximum at about 20 GeV;
- 3. Precision measurements of net-proton number cumulants up to 4th order are presented, $3.2 4.7\sigma$ deviation relative to models without CP are found in most central Au+Au collisions at 20 GeV

Outlook

- 1. Higher order measurements and acceptance extension of net-proton cumulants from collider energies;
- 2. Analysis using FXT data sets

Thank You!