

Exploring electromagnetic field effects using Beam Energy Scan

Aditya Prasad Dash UCLA

Brookhaven[®] National Laboratory

Supported in part by the

RHIC AGS Annual Users Meeting 12 June 2024

Motivation

- Ultra strong magnetic fields ~ 10^{18} G are expected in heavy ion collisions
- Greater than anywhere else observed in the universe
- What is its strength and how does it evolve?

Earth' surface ~ 0.5 G

Neutron Star ~ 10¹⁴ G

Image Credits: NASA, ESA, T. Bowman and J. Abramowitz/Brookhaven National Laboratory

Heavy Ion Collisions ~ 10¹⁸ G

2

Impact of the electromagnetic field

QCD Phase Diagram

- Deconfinement and chiral transitions may split in the presence of magnetic fields
- QCD crossover may turn to a first order transition in the presence of magnetic fields

Phase diagram of hot QCD in an external magnetic field: Possible splitting of deconfinement and chiral transitions

Ana Júlia Mizher, M. N. Chernodub, and Eduardo S. Fraga Phys. Rev. D **82**, 105016 – Published 16 November 2010

Phase diagram of QCD in a magnetic background

Massimo D'Elia, Lorenzo Maio, Francesco Sanfilippo, and Alfredo Stanzione Phys. Rev. D **105**, 034511 – Published 23 February 2022

3

Impact of the electromagnetic field

Chiral Magnetic Effect

QCD topological vacuum transitions

Chirality Imbalance+ Strong magnetic field

Kharjeev et al., PRL 81(1998(512), S.A. Voloshin, PRC, 70, 057901 (2004), arXiv 2401.00317, Z. Xu Quark Matter 2023

Under intense investigation

Some recent articles on arXiv

1. arXiv:2405.16306 [pdf, other] hep-ph nucl-th

Magnetic field effect on hadron yield ratios and fluctuations in hadron resonance gas

Authors: Volodymyr Vovchenko

Abstract: We study the influence of an external magnetic...
✓ More
Submitted 25 May, 2024; originally announced May 2024.
Comments: 10 pages, 6 figures

5. arXiv:2405.02610 [pdf, other] nucl-th hep-ph

External magnetic field induced paramagnetic squeezing effect in heavy-ion collisions at the LHC

Authors: Ze-Fang Jiang, Zi-Han Zhang, Xue-Fei Yuan, Ben-Wei Zhang

Abstract: In non-central **heavy-ion collisions**, the quark-gluon plasma (QGP) encounters the most intense **magnetic field** ever produced in nature, with a strength of approximately $10^{19\sim20}$ Gauss. Recent la... \bigtriangledown More **Submitted** 4 May, 2024; originally announced May 2024.

Comments: 11 pages, 8 figures

11. arXiv:2402.17344 [pdf, other] hep-ph hep-ex hep-th nucl-ex nucl-th

Impact of strong magnetic field, baryon chemical potential, and medium anisotropy on polarization and spin alignment of hadrons

Authors: Bhagyarathi Sahoo, Captain R. Singh, Raghunath Sahoo

Abstract: ...vector mesons create remarkable interest in investigating the particle polarization in the relativistic fluid produced in **heavy**-... ∨ More

Submitted 27 February, 2024; originally announced February 2024.

Comments: 13 pages and 8-captioned figures. Submitted for publication

14. arXiv:2402.02176 [pdf, ps, other] hep-ph

Role of time-varying magnetic field on QGP equation of state

Authors: Yogesh Kumar, Poonam Jain, Pargin Bangotra, Vinod Kumar, D. V. Singh, S. K. Rajouria

Abstract: The phase diagram of quantum chromodynamics (QCD) and its associated thermodynamic properties of quark gluon plasma (QGP) are studied in the presence of time dependent **magnetic**... ⊽ More **Submitted** 3 February, 2024; **originally announced** February 2024.

Comments: 17 pages, 4 figures, accepted in Advances in High Energy Physics

Citation counts of previous articles form Inspire HEP

Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions

Umut Gursoy (Utrecht U.), Dmitri Kharzeev (Brookhaven and SUNY, Stony Bro CTP) Jan 15, 2014	ok), Krishna Rajagopal (N	IIT, Cambridge,					
12 pages Published in: <i>Phys.Rev.C</i> 89 (2014) 5, 054905							
Published: May 13, 2014							
e-Print: 1401.3805 [hep-ph]							
DOI: 10.1103/PhysRevC.89.054905							
View in: OSTI Information Bridge Server, Nuclear Science References, ADS Abstract Service							
Ď pdf 📑 cite 🗟 claim	C reference search						

Generation of the electromagnetic field

Colliding nuclei are positively charged and generate strong EM fields Initial EM fields can be calculated using Lienard-Wiechert potentials

$$e\mathbf{E}(t,\mathbf{r}) = \frac{e^2}{4\pi} \sum_{n} Z_n \frac{\mathbf{R}_n - R_n \mathbf{v}_n}{(R_n - \mathbf{R}_n \cdot \mathbf{v}_n)^3} (1 - v_n^2)$$
$$e\mathbf{B}(t,\mathbf{r}) = \frac{e^2}{4\pi} \sum_{n} Z_n \frac{\mathbf{v}_n \times \mathbf{R}_n}{(R_n - \mathbf{R}_n \cdot \mathbf{v}_n)^3} (1 - v_n^2).$$

As magnetic field is generated by spectators and participants with $v_n = v_z = \sqrt{1 - (2m_N/\sqrt{s})^2} \approx 1$.

$$e\mathbf{E}_{\perp}(0,\mathbf{r}) pprox rac{e^2}{4\pi} rac{\sqrt{s}}{2m_N} \sum_n rac{\mathbf{R}_{n\perp}}{R_{n\perp}^3},$$

 $e\mathbf{B}_{\perp}(0,\mathbf{r}) pprox rac{e^2}{4\pi} rac{\sqrt{s}}{2m_N} \sum_n rac{\mathbf{e}_{nz} \times \mathbf{R}_{n\perp}}{R_{n\perp}^3},$

W. Deng et al. Phys. Rev. C 85, 044907 (2012)

Evolution of EM field

- Initial Stage- Gluon dominated -> Pre-equilibrium stage of rapid expansion in which quarks form -> Hydrodynamic stage with conductivity
- Field decays very fast in vacuum ~ formation time of quarks
- Conducting medium can sustain the field
- The field drops faster at higher beam energy

G. Wang Chirality Vorticity and Magnetic Field in Heavy Ion Collisions, UCLA 2022

A. Huang et al. PRC 107, 034901 (2023)

Experimental Signatures

EM fields in ultra Peripheral Collisions

Collisions with impact parameter larger than twice the radius of the nuclei No QGP expected Evidence of interaction between EM fields

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

ATLAS Collaboration

Nature Physics 13, 852–858 (2017) Cite this article

Measurement of e^+e^- Momentum and Angular Distributions from Linearly Polarized Photon Collisions

J. Adam et al. (STAR Collaboration) Phys. Rev. Lett. 127, 052302 - Published 27 July 2021

EM fields in Heavy Ion Collisions

EM forces affect azimuthal distribution of particles Can be characterized by the Fourier expansion coefficients (v_n)

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos n(\phi - \Psi)\right)$$
[PRC 58 1671]

 \mathcal{V}_1 is called directed flow

Reflects asymmetric emission preference along the x axis Can be measured by

$$v_1 = \langle \cos(\phi - \Psi_{\rm EP}) \rangle / R\{\Psi_{\rm EP}\}$$

φ=azimuthal angle of particle momentum Ψ_{EP} = event plane (containing impact parameter and beam direction) azimuthal angle $R{\Psi_{EP}}$ = Event plane resolution

STAR, Phys. Rev. X 14, 011028

Electromagnetic field effects on directed flow

Different EM forces acting on QGP constituents

- **1.Hall Effect:** $F = q(v \times B)$
- **2.Coulomb Effect**: **E** generated by spectators
- **3.Faraday Induction**: Generated by decreasing magnetic field as spectators fly away

These EM forces give opposite v_1 to positively and negatively charged particles

 $\Delta dv_1/dy = dv_1(h^+)/dy - dv_1(h^-)/dy$ could reveal electromagnetic effects in QGP

G Wang., Chirality and Vorticity and Mag. Fields in Heavy Ion Collisions

Transported quark effect

Transported quark effect: u and d quarks from incoming nuclei can have different v_1 than that of quarks produced in the interaction region due to initial stage effects

It can affect hadrons having u and d quarks.

Model studies show transported quarks have positive dv₁/dy

Transported quark effect:

 $p: uud \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} > 0$ $\bar{p}: \bar{u}\bar{u}\bar{d} \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} > 0$ $K^+: \bar{u}\bar{s} \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} > 0$ $\pi^+: \bar{u}\bar{d} \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} < 0$ $\pi^-: \bar{u}\bar{d} \qquad \frac{dv_1^+}{dy} - \frac{dv_1^-}{dy} < 0$ (#d>#u, Au neutron rich)

Transported quark effects on pions should give opposite ∆dv/dy₁ compared to protons and kaons assuming quark coalescence.

J.C. Dunlop et.al, PRC 84 044914, K. Nayak et al PRC 100, 054903, P. Bozeck PRC 106, L061901, Image Credits: D. Shen

P. Bozek, PRC 106 L061901;

EM field effects + Transported quark effects expectation

Expectation for protons

 $v_1 \sim \text{linear function of rapidity}$. Faraday + Coulomb effect is expected to dominate among the electromagnetic forces [1]

Δdv₁/dy= dv₁(h⁺)/dy - dv₁(h⁻)/dy could reveal a sign change due to electromagnetic effects in QGP

[1] PRC 98,055201, PRC 89 054905, A.P. Dash Quark Matter 2023,

STAR, Phys. Rev. X 14, 011028

Δv in Cu+Au Collisions

STAR, Phys. Rev. Lett. 118, 012301

- •Au has more charge and thus there should be a net electric field towards Cu
- •Non-zero Δv_1 observed consistent with the Coulomb field

14

Δv₁ for charm quarks

- •Charm quarks expected to form early
- •Should feel stronger effect of the initial electromagnetic field

STAR results

• v_1 slope (dv_1/dy) of D mesons ~ 25 times larger than that for

charged kaons with 3.4σ significance

- Δv_1 slope ~ -0.011 ± 0.034 (stat) ± 0.020 (syst)
- •Too large uncertainties to conclude Δv_1 splitting for D^0 and D^0

Similar study by ALICE Phys. Rev. Lett. 125, 022301 (2020), other magnetic field related searches: STAR, PRC 76 024915 (2007), STAR, Nature 548 (2017) 62, PRC 109, 034917 (2024)

STAR, Phys. Rev. Lett. 123, 162301 15

v₁(**y**) for π^{\pm} , K^{\pm} , $p(\bar{p})$ in peripheral collisions

> In peripheral collisions (50-80% centrality), proton $d\Delta v_1/dy$ is negative

Significantly negative slopes (from linear fit) in all considered energies \succ

STAR, Phys. Rev. X 14, 011028, A.P. Dash Quark Matter 2023, arXiv:2401.04838

$v_1(y)$ vs centrality for $\pi^{\pm}, K^{\pm}, p(\bar{p})$ at 19.6 GeV

- Pattern consistent with expectations
- • $\Delta(dv_1/dy)$ is positive in mid central collisions for protons and kaons
- • $\Delta(dv_1/dy)$ turns negative in peripheral collisions as expected from dominance of Faraday+Coulomb effect

Expectation for protons

STAR, Phys. Rev. X 14, 011028, A. P. Dash QM 2023, arXiv:2401.04838

Particle species dependence at different collision energies

- **BES-II** results of negative $d(\Delta v1)/dy$ in peripheral collisions as expected from electromagnetic effects
- Suggests dominance of Faraday+Coulomb effect in peripheral collisions \succ
- Comparison to IEBE-VISHNU+EM field calculations indicates that the used conductivity $\sigma = 0.023$ fm⁻¹ \succ falls within a reasonable range

[PRC 98,055201, PRC 89 054905]

STAR, Phys. Rev. X 14, 011028, A. P. Dash QM 2023, arXiv:2401.04838

18

Beam energy dependence for a given particle

d(Δv₁)/dy in peripheral collisions is more negative at lower collision energies for each species
 The passage time (2R/γ) is larger, and hence the lifetime of the electromagnetic field should be longer.
 The lifetime of the fireball is shorter at lower energies.

Δv_1 as a function of p_T

> Negative Δv_1 for p_T ranges considered in this analysis in peripheral collisions > Indication of larger splitting at higher p_T as expected from theory [PRC 98,055201] Could arise from a decrease in the Hall effect at higher p_T (or smaller p_z) arXiv:2401.04838, A. P. Dash QM 2023

System Size Dependence

- Clear system size dependence for protons in mid central collisions
- Δv_1 for protons shows sign change in peripheral collisions
- Theoretical modeling needed to understand these results

Other possibilities?

- Initial baryon distribution could be anisotropic which would produce asymmetry between particles and antiparticles
- Similar to transported quark effect and thus should give opposite contribution to pions compared to protons and kaons
- Cannot explain negative $\Delta(dv_1/dy)$ in peripheral collisions for $\pi^{\pm}, K^{\pm}, p(\bar{p})$
- Active research in other mechanisms for generating Δv_1

T. Parida et.al., arXiv:2305.08806

roduce asymmetry between particles and antiparticles osite contribution to pions compared to protons and kaons or $\pi^{\pm}, K^{\pm}, p(\bar{p})$

Δv₁ using produced quarks

> v₁ difference of particles with pair-produced quarks eg. $\bar{p}(\bar{u}\bar{u}\bar{d})$ and $K^{-}(\bar{u}s)$ are measured

> The $d\Delta v_1/dy$ combinations (fit constrained to origin) shows positive slope which increases with Δq and ΔS

> Hall effect could be dominant in mid central collisions

Index	Quark mass	Δq	ΔS	Δv_1 combination	$F_{\Delta} \times 10^4$ (
1	$\Delta m = 0$	0	0	$[ar{p}(ar{u}ar{u}ar{d})+\phi(sar{s})]-[K^{-}(ar{u}s)+ar{\Lambda}(ar{u}ar{d}ar{s})]$	$03\pm43\pm$
2	$\Delta m pprox 0$	1	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [rac{1}{3}\Omega^-(sss) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$	$41\pm25\pm$
3	$\Delta m pprox 0$	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K^{-}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$	$39\pm07\pm$
4	$\Delta m = 0$	2	6	$[\overline{\Omega}^+(ar{s}ar{s}ar{s})]-[\Omega^-(sss)]$	83 ± 130
5	$\Delta m pprox 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(ar{d}ar{s}ar{s})] - [K^-(ar{u}s) + rac{1}{3}\Omega^-(sss)]$	$64\pm36\pm$

[STAR,arXiv:2304.02831]

Summary

Ultra strong electromagnetic fields are expected in heavy ion collisions

 $\Delta v_1 \longrightarrow v_1 \longrightarrow v_1$ probe to ultra strong electromagnetic fields, can help constrain EM properties of QGP

 $d(\Delta v_1(y))/dy$ in peripheral collisions

- ✓ Turns negative expected from dominance of Faraday+Coulomb effect

field and shorter lifetime of the fireball at lower collision energies

- ✓ Shows system size dependence
- $\Delta v_1(p_T)$ in peripheral collisions signs of increase with p_T expected from EM fields

Theoretical modeling needed for understanding the evolution of electromagnetic fields

√ More negative for lower collision energies — expected from longer lifetime of the electromagnetic

Backup

$\Delta v_1(p_T)$ at 14.6GeV and 7.7GeV

- Similar p_T dependence trend at 19.6, 14.6 GeV and 7.7 GeV
- Indication of larger splitting at higher p_T as expected from theory
- Could arise from a decrease in the Hall effect at higher p_T (or smaller p_z)

[PRC 98, 055201, A.P. Dash Quark Matter 2023]

STAR experiment

Collision System: Au+Au Beam Energies: 200, 54.4, 19.6, 14.6 and 7.7 GeV in BES-II

Time Projection Chamber

Tracking of charged particles with $|\eta| < 1$ and full azimuthal coverage

Time of Flight

Extends particle identification to higher momenta, $|\eta| < 0.9$ and full azimuthal coverage

Event Plane Detector and Zero Degree Calorimeter

Used for event plane reconstruction, EPD(2.1< $|\eta|$ <5.1), $ZDC-SMD(|\eta| > 6.3)$

A. Ikbal QM2022

27