Chiral Magnetic Effect (CME) Overview - 2024 RHIC/AGS annual users' meeting

Yicheng Feng

Purdue University

June 12, 2024

STAR

Supported in part by the U.S. DEPARTMENT OF ENERGY Office of Science

PURDUE

IVERSITY

A New Era of Discovery Guided by the New Long Range Plan for Nuclear Science

Outline

- 1. Introduction
- 2. Early experimental approaches
- 3. Recent experimental approaches
- 4. Summary and Outlook

Physics context

- ▶ QGP in heavy-ion collisions: quark mass negligible → chiral symmetry restoration
- ▶ η - η' puzzle: m_{η} (548 MeV) $< m_{\eta'}$ (958 MeV) \rightarrow not explainable with chiral symmetry. [Weinberg, *The U*(1) problem, PRD 11(1975)3583]
- ▶ 't Hooft instanton mechanism can resolve this puzzle ['t Hooft, PRL 37(1976)8], [Peccei, Lect. Notes Phys. 741(2008)3] \rightarrow break the chiral symmetry, \mathcal{P} , and \mathcal{CP} .

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \bar{\psi}_{q,a} \left(\begin{array}{c} i \gamma^{\mu} \partial_{\mu} \delta_{ab} - m_{q} \delta_{ab} \\ \text{quark quark-gluon interaction} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \end{array} \right) \psi_{q,b} - \frac{1}{4} G^{A}_{\mu\nu} G^{A,\mu\nu} + \left. \begin{array}{c} \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu} \\ \theta \frac{\alpha_{s}}{8\pi} G^{A}_{\mu\nu} \tilde{G}^{A,\mu\nu}$$

- ▶ low-energy experiments $\rightarrow \theta$ upper limit $\sim 10^{-10}$ [PDG, PTEP 083C01 (2022)], [Kim and Carosi, Rev.Mod.Phys.82(2010)557-602] \rightarrow too small to explain the matter-antimatter asymmetry in the universe (the strong CP problem). analogy to E&M field $\vec{E:}$ C-odd, \mathcal{P} -even, \mathcal{T} -odd
- Is θ a constant? dependent on energy scale? larger value in early universe? Heavy-ion collisions approach the energy scale of early universe! → check heavy-ion collisions!

Chiral Magnetic Effect (CME)

[Kharzeev et al., PRL 81(1998)512; NPA 803(2008)227]

1. Introduction

2. Early experimental approaches

3. Recent experimental approaches

4. Summary and Outlook

The commonly used observable–azimuthal correlator $\Delta\gamma$

azimuth Fourier series

$$\frac{\mathsf{d}N^{\pm}}{\mathsf{d}\phi^{\pm}} \propto 1 + 2a_1^{\pm}\sin(\phi^{\pm} - \Psi_{\text{\tiny RP}}) + \sum_n 2v_n \cos n(\phi^{\pm} - \Psi_{\text{\tiny RP}})$$

CME term a_1^{\pm} , in the same event $a_1 = a_1^{+} = -a_1^{-}$. \rightarrow random direction from event to event $\rightarrow \langle a_1 \rangle$ vanishes

two particles α,β in the same event

$$\gamma_{lphaeta} = \langle \cos(\phi_lpha + \phi_eta - 2\Psi_{ ext{RP}})
angle,$$

Opposite-sign charged pair: $\gamma_{\rm OS}$; same-sign $\gamma_{\rm SS}$; their difference

$$\Delta \gamma = \gamma_{\rm os} - \gamma_{\rm ss}.$$

charge-independent backgrounds canceled (like momentum conservation)

[Voloshin, RPC 70(2004)057901]

Signal and background in $\Delta\gamma$

- ▶ 2-particle background like resonance decay (e.g., $\rho \rightarrow \pi^+\pi^-$), which is coupled with v_2 . [Voloshin, RPC 70(2004)057901], [Wang, PRC 81(2010)064902], [Bzdak, Koch, Liao, PRC 81(2010)031901]
- In data analysis, RP is unknown, so the reconstructed event plane (EP) is used as a proxy. EP + 2 POIs → correlated triplets (jets, di-jets, ...) → background

The first measurements on $\Delta\gamma$

 $\leftarrow \mbox{ similar results, though } very \mbox{ different energy, } species$

• $\gamma_{\rm os} > 0, \gamma_{\rm ss} < 0 \rightarrow \Delta \gamma > 0$, qualitatively consistent with CME signal (?)

background contribution not understood

"Improved theoretical calculations of the expected signal and potential physics backgrounds ...are essential to understand whether or not the observed signal is due to [CME]." – [STAR, PRL 103(2009)251601]

Follow-up calculations and simulations indicate that the backgrounds could be very significant [Wang, PRC 81(2010)064902] [Bzdak, Koch, Liao, PRC 81(2010)031901] [Schlichting, Pratt, PRC 83(2011)014913]

Beam energy dependence

- STAR first beam energy scan (BES-I): Au+Au, $\sqrt{s_{\rm NN}} = 7.7 - 62.4$ GeV.
 - "weak energy dependence down to 19.6 GeV and then falls steeply at lower energies" – [STAR, PRL 113(2014)051302]

Small system measurements

- Small system \rightarrow random B and EP orientations \rightarrow zero signal expected
- \blacktriangleright Similar results between small systems and A+A \rightarrow large background

1. Introduction

- 2. Early experimental approaches
- 3. Recent experimental approaches
- 4. Summary and Outlook

SP/PP comparison method

- ▶ Participant plane (PP) \rightarrow nucleons collided \rightarrow collision zone \rightarrow flow \rightarrow backgrounds w/ flow
- ▶ Spectator plane (SP) \rightarrow nucleons flying through \rightarrow magnetic field \rightarrow CME signal
- ► The signal and background(coupled with flow) respond to those two planes differently → SP, PP comparison → separate the signal and background(coupled with flow)

residual background: nonflow

SP/PP comparison method

• Notation $R(\Psi) = \Delta \gamma(\Psi) / v_2(\Psi)$

▶ low energy 27 GeV \rightarrow beam rapidity $Y_{\sf beam} = 3.4 \rightarrow {\sf EPD}~(2.1 < |\eta| < 5.1)$ divided into 2 parts

- inner EPD $3.4 < |\eta| < 5.1 \rightarrow$ estimate SP
- outer EPD $2.1 < |\eta| < 3.4 \rightarrow$ estimate PP (blue markers)
- TPC $(|\eta| < 1)$ is also used for PP (red markers)

Event shape methods

- ▶ STAR measurements w.r.t. SP (ZDC or inner EPD) can reduce nonflow backgrounds
- Event shape methods are designed to remove backgrounds coupled with flow.
- ▶ Underlying complications → better understanding needed

Correlation between CME observables with Λ measurements

The isobar experiment

- ▶ initial expectation: ${}^{96}_{44}$ Ru, ${}^{96}_{40}$ Zr: same A, different $Z \rightarrow$ same background, different signal
 - ▶ Ru+Ru: proton number $\uparrow \rightarrow$ magnetic field $\uparrow \rightarrow$ CME signal $\uparrow \rightarrow \Delta \gamma / v_2 \uparrow \rightarrow$ Ru/Zr > 1

- STAR blind analysis [STAR, PRC 105(2022)014901] → isobar ratios Ru/Zr < 1, opposite to the initial expectation ← multiplicity diff. ← nuclear structure [Xu et al., PRL121(2018)022301].</p>
- ▶ Nonflow background baseline estimate \rightarrow CME upper limit 10% (95% CL) [STAR, arXiv:2308.16846, 2310.13096, QM2023]. Forced match method (N, v_2 , EP res.) [STAR, QM2023] \rightarrow consistent with unity

The isobar experiment

flow-induced backgrounds: resonance decays \rightarrow estimated by pair excess $r = \frac{N_{\rm OS} - N_{\rm SS}}{N_{\rm OS}}$ ml<1.0.2<p <2.0 GeV/c Ru+Ru / Zr+Zr STAR + 1/N (acceptance & kink corrected) Isobar, $\sqrt{s_{_{NN}}}$ = 200 GeV + r FE. Inl<1. 0.2<p_<2 GeV/c 410d²N_{SS} dΔη dΔφ 405 400 0.95 395 -2 10 20 40 60 centrality (%) STAR Isobar post-blind analysis, VSNN = 200 GeV, Ru+Ru / Zr+Zr 20-50% 1.02 IM. Abdallah et al. (STAR), Phys. Rev. C 105 (2022) 0149011 Ratio is study: baseline estimate 0.98 0.96 0.94 (2412)235FTPC LAMA2 Valat P. 12412 235EPC (Artic Voles etc) (Strig Step. P.C. 124121238C.T 1241-12/238C

nonflow in v_2 measurement: fit two-particle $(\Delta \eta, \Delta \phi)$ 2D distribution to decompose

3-particle nonflow:

HIJING model \rightarrow no flow \rightarrow solely 3p nonflow bkg

Post-blind: nonflow background baseline estimate \rightarrow CME upper limit 10% (95% CL) [STAR, arXiv:2308.16846, 2310.13096] .

17/19

Outlook

year	minimum bias $[\times 10^9 \text{ events}]$	-
2014 2016	2	
2010	20	-
2025	20	

STAR, Beam Use Request for Run23-25, tab 5]

 \rightarrow large reduce in statistical uncertainty

 newly-added detectors can help (e.g, EPD, iTPC, ...)

Summary

- CME a fundamental physics in QCD
- Major background contamination
- Novel methods to extract CME
 - Isobar experiments
 - Event shape methods
 - Correlation measurement of CME– Λ polarization
 - SP/PP methods (TPC, ZDC, EPD)
- \blacktriangleright ×10 more statistics, wider acceptance