STAR Foward Systems and Related Topics

Xilin Liang, for the STAR Collaboration

University of California, Riverside

2024 RHIC/AGS ANNUAL USERS' MEETING Brookhaven National Lab June 11, 2024

Xilin Liang

Supported in part by

The STAR forward detectors during 2011 to 2017 (before STAR Forward Upgrade):

- Forward Meson Spectrometer (FMS): $2.6 < \eta < 4.2, \phi \in (0, 2\pi);$ Detect γ, π^0, η
- Roman Pot detector (RP): Not shown in the picture; Located about 15 m away from Interaction Point on both sides;

Detect slightly scattered protons

• Trigger detectors: Beam-Beam Counter (BBC); Zero Degree Calorimeter (ZDC); Vertex Position Detector (VPD)

Transverse Single-Spin Asymmetry (TSSA, A_N)

Highlight of STAR Forward Physics with Transversely Polarized Beam: TSSA

- A_N : $\frac{\sigma_L \sigma_R}{\sigma_I + \sigma_R}$
- pQCD predicts A_N is small: $A_N \sim \frac{m_q \alpha_s}{p_T} \sim 0$
- Large A_N at forward region is observed in proton-proton collisions
- Theories: TMD framework (Sivers effect, Collins effect), Twist-3 framework

• Indication from experiment: diffraction?

References:

E.C. Aschenauer et al., arXiv:1602.03922

(STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)

Inclusive $\pi^0 A_N$

(STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)

- $\pi^0 A_N$ depends on x_F for 200 GeV and 500 GeV results, consistent with previous STAR results
- $\pi^0 A_N$ shows independence on \sqrt{s}

(STAR) J. Adam et al., Phys. Rev. D 103, 072005 (2021)

• $\pi^0 A_N$ for p + p, p + AI, and p + Au increases with increasing p_T at 0.17 < x_F < 0.47, but flattens or falls with p_T for larger x_F

Isolated and Non-isolated $\pi^0 A_N$

(STAR) J. Adam et al., Phys. Rev. D 103, 072005 (2021) (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021) 0.27<x_F<0.37 0.17 < x < 0.210.21<x.<0.27 π⁰ STAR 200 GeV pp not isolated STAB $n^{\uparrow} + n \rightarrow \pi^{0} + X$ Isolated nº 200 GeV A_N Isolated nº 500 GeV p_ > 2 GeV/c 0.2 Non-isolated nº 200 GeV 2.7 < n < 4.0Non-isolated #0 500 GeV 0.15 3.0/3.4% beam pol. scale uncertainty not shown Theory 200 GeV 0.1 Theory 500 GeV 0.0 p _ (GeV/c) p _ (GeV/c) p _ (GeV/c) 0.37<x e<0.47 0.47<x co.61 0.61<x,<0.81 0.14 p_{T} [GeV/c] 0.06 0.2 0.3 0.4 0.5 0.6 XF 3 4 5 p (GeV/c) 3.5 4 4.5 p_ (GeV/c) p_(GeV/c)

• A_N for isolated π^0 is significantly larger than that for non-isolated π^0 regardless of x_F and p_T

- Isolated π^0 : No other nearby photons
- Indication for large A_N from diffraction?

Xilin Liang

Multi-dimensional Studies for Inclusive EM-jet at 200 GeV

The Electromagnetic jets (EM-jets) are

- The EM-jet *A_N* decreases with increasing photon multiplicity for *x_F* > 0
 - A_N is larger for the EM-jets consisting of 1 or 2 photons
- A_N increases with x_F for all the cases of photon multiplicity
- Is it an indication that large A_N could come from diffractive processes?

Xilin Liang

Diffractive Processes and Semi-exclusive Process

- Single diffractive process: $p + p \rightarrow p + EM$ -jet + X
 - One proton track detected by east side RP
 - Determine Rapidity Gap: East side BBC veto

 $(-5 < \eta < -2.1)$

• These east RP tagged events are small fraction of real single diffractive events due to limited RP acceptance

• The Rapidity Gap event (RG)

requires: EM-jet at FMS and East side BBC veto

- No RP requirement for RG events
- At least 50% RG events are single diffractive events

- Semi-exclusive process requires:
 - FMS EM-jet
 - One proton track detected by west side RP
 - 3 Zero or one proton track on east RP
 - O Veto on West BBC
- The rapidity gap is not large enough, so we do not classify this process as diffractive process

Xilin Liang

RHIC/AGS 2024

7/19

Single Diffractive EM-jet A_N at 200 GeV

- The EM-jet A_N for x_F > 0 (> 2 σ significance of non-zero) is observed for the case of all photon multiplicity and 1 or 2 photon multiplicity
- The EM-jet with 1 or 2 photon multiplicity has larger A_N than with 3 or more photon multiplicity

Rapidity Gap Event EM-jet A_N at 200 GeV

- The size of EM-jet *A_N* for rapidity gap events is similar to that for inclusive process
- The A_N for the EM-jet with 1 or 2 photon multiplicity is the largest

Will Single Diffractive Process Contribute to Large A_N in Inclusive Process?

- *A_N* for the three processes consistent with each other within uncertainty
- Fraction of diffractive cross section in the total inclusive cross section at the forward region is about 20%. A large A_N for the diffractive process is expected if it is the dominant contributor to the large A_N in the inclusive process.
- The single diffractive processes fail to provide evidence for its significant contribution to large A_N in the inclusive processes

Semi-exclusive Process EM-jet A_N at 200 GeV

- A non-zero A_N for x_F > 0 is observed with 3.3 σ significance for semi-exclusive process
- Sign of A_N is negative. Theoretical inputs are needed to understand the different sign

Unpolarized Physics: Nonlinear Gluon Effects in QCD

(STAR) M.S. Abdallah et al., Phys. Rev. Lett. 129, 092501

• First measurement of the A dependence of nonlinear gluon effects

- At low p_T regime, a clear suppression is observed in p + A compared to the p + p data
- Such suppression scaling with A^{1/3} matches gluon saturation models
- At high p_T regime, the suppression is weaker

STAR Forward Upgrade

Coverage: $2.5 < \eta < 4.0$

- Located on STAR west side
- Rapidity coverage is the same as the EIC hadron arm

Requirement:

Detector	pp and pA	AA
ECal	\sim 10 % / \sqrt{E}	\sim 20 % / \sqrt{E}
HCal	\sim 50 % / \sqrt{E} + 10%	-
Tracking	Charge separation	$\delta p_T/p_T \sim 20 - 30\%$
	photon suppression	for $0.2 < p_T < 2 \text{ GeV/c}$

Combines:

- Forward Tracking System (FTS)
 - Forward Silicon Tracker (FST)
 - small-strip Thin Gap Chambers (sTGC)
- Porward Colorimeter System (FCS)
 - Electromagnetic Calorimeter (ECal)
 - Hadronic Calorimeter (HCal)

Measures:

- h^{+/-}, e^{+/-} (with good e/h separation)
- Photon, π^0 , jets

Status of the STAR Forward Upgrade

STAR Forward Upgrade data taking works well:

Completed:

- Run-22: $p + p \sqrt{s} = 508 \text{ GeV}$
- Run-23: $Au + Au \sqrt{s} = 200 \text{ GeV}$

Plans:

- Run-24: $p + p \sqrt{s} = 200 \text{ GeV} \&$ $Au + Au \sqrt{s} = 200 \text{ GeV}$
- Run-25: $Au + Au \sqrt{s} = 200 \text{ GeV} \&$ possible $p + Au \sqrt{s} = 200 \text{ GeV}$

Data production, calibration, and analysis are in progress:

- (Pre-)productions for run 22 are ready for Forward Upgrade software developments, calibrations, and analyses
- $\pi^{\rm 0}$ reconstruction for FCS ECal calibration is developed
- MIP study is ongoing
- Jet reconstruction & energy calibration are in progress
- J/ψ analysis is in progress
- Track matching studies between Forward Tracking and Calorimeters, as well as within calorimeters, are in progress

Xilin Liang

STAR Forward Physics

Status of the STAR Forward Upgrade

Data production, calibration, and analysis are in progress:

- (Pre-)productions for run 22 are ready for Forward Upgrade software developments, calibrations, and analyses
- π^0 reconstruction for FCS ECal calibration is developed
- MIP study is ongoing
- Jet reconstruction & energy calibration are in progress
- J/ψ analysis is in progress
- Track matching studies between Forward Tracking and Calorimeter, as well as within calorimeters, are in progress

STAR Forward Physics

TSSA with STAR Forward Upgrade

- A_N for full jet reconstruction, combined with charge-sign tagging of a hadron fragment with z > 0.5
- Projected statistical uncertainties drawn on twist-3 predictions
- Access to higher x_F with p + p at $\sqrt{s} = 200$ GeV (Run-24); and access to higher p_T with p + p at $\sqrt{s} = 508$ GeV (Run-22)

Collins Asymmetry with STAR Forward Upgrade

- STAR has performed Collins asymmetry measurement at mid-rapidity
- Similar × range as existing SIDIS measurements
- Q² values are one to two orders of magnitude higher than SIDIS at the same
- STAR forward upgrade will provide unique kinematics coverage for Collins asymmetry measurement
- x up to $\sim 0.5 \rightarrow$ sensitive to valence quark
- Spans in Q^2 by a factor of 6

Non-linear QCD with the STAR Forward Upgrade

- Previous STAR measurements used di- π^0 ; STAR Forward Upgrade will enable studies with di- $h^{+/-}$ with p + Au collisions (possibly in Run-25)
- The di- $h^{+/-}$ measurement can extend both lower and higher (x, Q^2) to map out the Q^2 boundary
- STAR hadro-production measurements are essential to explore the universality of non-linear effects along with the future EIC

Fruitful results in forward region at STAR with FMS:

- Large A_N observed in forward π^0 and EM-jets
- First diffractive A_N is studied, but diffractive A_N can not have significant contribution to large A_N
- STAR di- π^0 correlation study shows strong suppression at low p_T in p + A, following expected $A^{1/3}$ dependence

STAR Forward Upgrade will enable a wide range of high-impact measurements, shining light to the future EIC:

- The STAR Forward Upgrade was installed in 2021 and collected data successfully in Run-22 and Run-23
- The STAR Forward Upgrade will continue to collect data in Run-24 and Run-25
- With the forward tracking systems, it is allowed for studies with charged hadrons for lots of topics

Back up

Forward Meson Spectrometer (FMS)

- FMS can detect photons, neutral pions, and eta mesons in the forward direction
- 2.6 < η < 4.2

- FMS consists of 1264 Lead-Glass cells with photomultiplier tubes (PMT) readout connected, separated into two regions
- Inner region (green) have smaller size cells than the outer region (red), which can provide better photon separation ability
- All cells have ${\sim}18$ radiation length

Roman Pot (RP)

- Roman Pots (RP) are vessels which house the Silicon Strip Detector planes (SSDs). They are put close to the beam pipe
- RPs are able to detect and track slightly scattered protons close to beamline

- 2 sets of RP (inner and outer) on each side
- Each RP set contains a package above and below the beamline
- 4 SSDs per package (2 x-type and 2 y-type)

Collins Asymmetry for π^0 in a jet at 200 GeV and 500 GeV

(STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)

- The Collins asymmetries are very small at both energies
- The Collins asymmetries show weak j_T dependency

•
$$Z_{em} = \frac{E_{\pi^0}}{E_{jet}}$$

• j_T is the E_{π^0} projection perpendicular to jet

Forward Silicon Tracker (FST)

- 3 disks (at 152, 165, and 179 cm from the STAR IP), each with 12 modules
- Each module includes 3 single-sided double-metal mini-strip sensors (Si from Hamamatsu)
 - Fine granularity in ϕ and coarse in R
- Material budget $\sim 1.5\%~X_0$ per disk
- Technology is similar to STAR Intermediate Silicon Tracker
 - Same APV25-S1 front-end chip
 - Reusing the IST data acquisition and cooling systems
 Xiin Line
 STAR For

RHIC/AGS 2024

Small-strip Thin Gap Chambers (sTGC)

- 4 planes (at 307, 325, 343 and 361 cm from IP), each consisting of 4 pentagonal modules
 - Double-sided sTGC with diagonal strips give x, y, u in each layer
 - Position resolution < 200 μm
- Material budget $\sim 0.5\%~X_0$ per layer
- Readout based on VMM chips
 - Similar to the ATLAS sTGC system

Forward Calorimeter System (FCS)

- $\bullet\,$ FCS is located at \sim 7 m from the STAR IP
- Split in 2 movable halves inside and outside of ring
- Slightly projective

Preshower (not shown):

• Split signals off from STAR EPD for triggering

ECal:

- Reuse PHENIX Pb-Scintillator calorimeter
 - 1496 channels: $5.52 \times 5.52 \times 33 \ cm^3$
 - 66 sampling cells with 1.5 mm Pb / 4 mm Sc
 - 36 wavelength-shifting fibers per channel
 - 18 X₀; 0.85 nuclear interaction lengths
- Replaced PMTs with SiPM readout

HCal:

- Fe/Sc (20 mm/3 mm) sandwich
 - 520 channels: $10 \times 10 \times 84 \ cm^3$
 - Approximately 4.5 nuclear interaction lengths
- Uses same SiPM readout as ECal
- Developed in collaboration with EIC R&D