2024 RHIC/AGS Annual Users' Meeting 11/June/2024 - 14/June/2024
 Prospects with the sPHENIX

Genki Nukazuka (RIKEN/RBRC) C_{s}) on behalf of the sPHENIX Collaboration
sphe (x) Table of Contents

- sPHENIX Collaboration
- Physics Programs
- Detector
- Runs
- Spin physics at sPHENIX
- sPHENIX Today: Essential detectors for spin physics

sPhen sPHENIX Collaboration

Relativistic Heavy

 Ion Collider (RHIC)- First collisions in 2000
- $p+p, A u+A u, O+O$, etc
- $\mathrm{p}^{\rightarrow(\uparrow)}+\mathrm{p}^{\rightarrow(\uparrow)}$
- ${ }^{\text {s }} \mathrm{SNN}$ ~ $7-500 \mathrm{GeV}$

PH 渠ENIX

ran at RHIC from 2001 to 2016.
They contributed to the discovery of Quark-Gluon Plasma (QGP) and the study of proton spin structure. Data analysis is still continuing.

- State-of-the-Art Jet Detector at RHIC
- The collaboration was formed in 2016.
- Quark-Gluon Plasma (QGP) and Cold-QCD
- About 400 members from 81 institutions and 14 countries
- Home Page: https://www.sphenix.bnl.gov/

sphe (x) sPHENIX Physics Programs

HCal (outer)

Cross-section of the SPHENIX detector

The sPHENIX detector

- full azimuthal angle 2π and $|n|<1.1$ coverage in $\left|z_{\mathrm{vtx}}\right|<10 \mathrm{~cm}$
- 1.4 T Babar solenoid magnet
- the hadronic \& electromagnetic calorimeters (the first HCAL in midrapidity at RHIC)
- 3 tracking detectors in midrapidity (TPC (+TPOT), INTT, and MVTX)
- 3 general detectors in forward region (MBD, sEPD, and ZDC/SMD)

sPHENIX Beam Use Proposal 2023 (not all shown)					
Year	Beam	$\sqrt{ }$ SNN (GeV)	Data taking (week)	$\begin{aligned} & \quad \begin{array}{l} \text { Lumin } \\ (\|z\|<1 \\ \text { Recorded } \end{array} \end{aligned}$	osity, 0 cm) Sampled
2023	$\mathrm{Au}+\mathrm{Au}$	200	9	$3.7 \mathrm{nb-4}$	$4.5 \mathrm{nb}^{-1}$
2024	$p^{\uparrow}+p^{\uparrow}$	200	17	$\begin{gathered} 0.44 \mathrm{pb}^{-1} \\ (5 \mathrm{kHz}) \end{gathered}$	$31 \mathrm{pb}^{-1}$
2024	$A u+A u$	200	3	$0.4 \mathrm{nb}^{-1}$	-
2025	$A u+A u$	200	24.5	$6.3 \mathrm{nb}^{-1}$	-

2023: Commissioning

- The construction was finished in April/2023.
- The first beam came in May/2023.
- 2023/08/01: Beam was stopped.
- 2023/08-09: Commissioning with cosmic ray measurements

2023: Commissioning

sPHENIX Beam Use Proposal 2023 (not all shown)

Year Beam	$\begin{array}{c}\sqrt{\text { SNN }} \\ (\mathrm{GeV})\end{array}$	$\begin{array}{c}\text { Data } \\ \text { taking } \\ \text { (week) }\end{array}$	$\begin{array}{c}\text { Luminosity, } \\ (\|\mathrm{z}\|<10 \mathrm{~cm}) \\ \text { Recorded }\end{array}$	
$2023 \mathrm{Au}+\mathrm{Au}$	200	9	$3.7 \mathrm{nb}^{-1}$	$4.5 \mathrm{nb}^{-1}$

- The construction was finished in April/2023.
- The first beam came in May/2023.
- 2023/08/01: Beam was stopped.
- 2023/08-09: Commissioning with cosmic ray measurements
$\checkmark \sim$ Nov/2023: TPC maintenance started
\checkmark Feb/2024: End of TPC maintenance
\checkmark Mar/2024: INTT and MVTX were reinstalled and tested.
\checkmark Mar/2024: MBD was reinstalled.
\checkmark April/2024: sEPD reinstallation

2023: Commissioning

sphe (x) Plan and Status
sPHENIX Beam Use Proposal 2023 (not all shown)

Year	Beam	$\sqrt{\mathrm{s}_{\mathrm{NN}}}$$(\mathrm{GeV})$	Data taking (week)	Luminosity, ($\|\mathrm{z}\|<10 \mathrm{~cm}$)	
				Recorded	Sampled
2023	$\mathrm{Au}+\mathrm{Au}$	200	9	$3.7 \mathrm{nb}^{-1}$	$4.5 \mathrm{nb}^{-1}$
2024	$p^{\dagger}+p^{\dagger}$	200	17	$\begin{aligned} & 0.44 \mathrm{pb}^{-1} \\ & (5 \mathrm{kHz}) \end{aligned}$	31 p
2024	$A u+A u$	200	3	$0.4 \mathrm{nb}^{-1}$	-
2025	$\mathrm{Au}+\mathrm{Au}$	200	24.5	$6.3 \mathrm{nb}^{-1}$	-

$\checkmark \sim$ Nov/2023: TPC maintenance started \checkmark Feb/2024: End of TPC maintenance
\checkmark Mar/2024: MBD was reinstalled.
\checkmark April/2024: sEPD reinstallation

- The construction was finished in April/2023.
- The first beam came in May/2023.
- 2023/08/01: Beam was stopped.
- 2023/08-09: Commissioning with cosmic ray measurements
- 2024: $\mathrm{p}^{\uparrow}+\mathrm{p}^{\uparrow}$, $A u+A u$ -
- Transversely polarized proton $\mathrm{p}^{\dagger}+\mathrm{p}^{\dagger}$ ($\sim 60 \%$ polarization) collision at $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$ - Commissioning with $\mathrm{Au}+\mathrm{Au}$ for 6 weeks, which was planned for 2023, is carried over.

\checkmark Mar/2024: INTT and MVTX were reinstalled and tested.

2023: Commissioning

sPHE(X) Plan and Status
sPHENIX Beam Use Proposal 2023 (not all shown)

Year	Beam	$\begin{aligned} & \text { Jsnn } \\ & (\mathrm{GeV}) \end{aligned}$	Data taking (week)	Luminosity, ($\|\mathrm{z}\|<10 \mathrm{~cm}$)	
				Recorded	Sampled
2023	$\mathrm{Au}+\mathrm{Au}$	200	9	$3.7 \mathrm{nb-4}$	$4.5 \mathrm{nb}^{-1}$
2024	$\mathrm{p}^{\uparrow}+\mathrm{p}^{\uparrow}$	200	17	$\begin{aligned} & 0.44 \mathrm{pb}^{-1} \\ & (5 \mathrm{kHz}) \end{aligned}$	$31 \mathrm{pb}^{-1}$
2024	$A u+A u$	200	3	$0.4 \mathrm{nb}^{-1}$	-
2025	$A u+A u$	200	24.5	$6.3 \mathrm{nb}^{-1}$	-

- The construction was finished in April/2023.
- The first beam came in May/2023.
- 2023/08/01: Beam was stopped.
- 2023/08-09: Commissioning with cosmic ray measurements

2024: $\mathrm{p}^{\uparrow}+\mathrm{p}^{\uparrow}$, $A u+A u$ -

- Transversely polarized proton $\mathrm{p}^{\uparrow}+\mathrm{p}^{\uparrow}$ ($\sim 60 \%$ polarization) collision at $\sqrt{ } s=200 \mathrm{GeV}$ - Commissioning with Au + Au for 6 weeks, which was planned for 2023, is carried over.

4/15
\checkmark Mar/2024: INTT and MVTX were reinstalled and tested \checkmark Mar/2024: MBD was reinstalled.

2025: Au + Au

- Au + Au data taking
$\sqrt{\text { April/2024: sEPD reinstallation }}$
- sPHENIX Collaboration
- Physics Programs
- Detector
- Runs
- Spin physics at sPHENIX
- sPHENIX Today: Essential detectors for spin physics

sphe(x) Spin Physics at sPHENIX

Measurements of transverse single spin asymmetries (TSSA) enable us to study

- Transverse-momentum dependent parton distribution functions (TMDs)
- Correlators in the collinear higher-twist framework
- Fragmentation functions (FF)
- etc.

$$
A_{N}=\frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}
$$

Table of TMDs

	Spin state of nucleon		
	Number density \boldsymbol{f}_{1}		$\begin{gathered} \text { Sivers } \\ \boldsymbol{f}_{\mathbf{1 T}}^{\perp} \end{gathered}$
		$\begin{gathered} \text { Helicity } \\ \boldsymbol{g}_{\mathbf{1} \boldsymbol{L}} \end{gathered}$	$\begin{aligned} & \text { Worm- } \\ & \text { Gear } \end{aligned}$ $g_{1 T}$
é é	Boer-	Worm-Gear	$\begin{aligned} & \text { Transver- } \\ & \text { sity } h_{1} \end{aligned}$
		$h_{1 L}^{\perp}$	Pretzelosity $h_{1 T}^{\perp}$

sнне(X) Spin Physics at sPHENIX

Direct photon $\quad p^{\uparrow}+p \rightarrow \gamma+X$

- Only the initial state effect is involved.
- Tri-gluon correlation function in the collinear twist-3 framework can be studied.
- It's connected with the gluon Sivers TMD PDF.

- PHENIX reported the first measurement of A_{N} from the direct photon.
- sPHENIX can improve the statistics of the measurement significantly.

Statistical projection of direct photon measurement at sPHENIX.

,

Open heavy flavor $p^{\uparrow}+p \rightarrow e^{+/-}+X$ Prompt $\mathrm{D}^{0} \quad p^{\uparrow}+p \rightarrow D^{0} / \overline{D^{0}}+X$

- Tri-gluon correlation function in the collinear twist-3 framework can be studied.
- It's connected with the gluon Sivers TMD PDF.
- sPHENIX can measure not only open heavy flavor electrons but D^{0}.
- The streaming readout for tracking detectors is necessary for D^{0} measurements.

PHENIX open heavy ${ }^{\top}$ flavor A_{N} measurement.
 measurement at sPHENIX.

Jet measurements: Jet, Dijet, and γ-Jet

Inclusive jet $p^{\uparrow}+p \rightarrow \mathbf{j e t}+X$

- TSSA has not been measured at central rapidity.
- sPHENIX can provide measurements with uncertainties at the level of 10^{-4}.
- Flavor separation by tagging leading hadron charge.

Dijet $p^{\uparrow}+p \rightarrow$ jet + jet $+X$

- Direct access to parton intrinsic transverse momentum.
- STAR preliminary results showed a nonzero effect for charge-tagged jets.
- sPHENIX will significantly contribute to dijet measurement.
$\boldsymbol{\gamma}$-Jet $p^{\uparrow}+p \rightarrow \gamma+\boldsymbol{j e t}+X$
- discussed later

Dijet TSSA by STAR
(arXiv:2305.10359)

spuc(8) Spin Physics at sPHENIX

Di-hadron $p^{\uparrow}+p \rightarrow \mathrm{~h}^{+}+\mathrm{h}^{-}+X$

- Di-hadron TSSA Aut gives access to Transversity PDF h_{1} and InterferenceFragmentation Function (FF) $H_{1, q}^{\varangle}$:

$$
d \sigma_{U T} \propto \sin \left(\phi_{R S}\right) \int d x_{a} d x_{b} f_{1}\left(x_{a}\right) h_{1}\left(x_{b}\right) \frac{d \Delta \hat{\sigma}}{d \hat{t}} H_{1, q}^{\varangle}(z, M)
$$

- The results from STAR agree with the theoretical prediction using SIDIS and $\mathrm{e}^{+} \mathrm{e}^{-}$data within statistical uncertainty.

- sPHENIX can extract it with great statistical uncertainty.
sphe Spin Physics at sPHENIX

Di-hadron $p^{\uparrow}+p \rightarrow \mathrm{~h}^{+}+\mathrm{h}^{-}+X$

- Di-hadron TSSA Aut gives access to Transversity PDF h_{1} and
 InterferenceFragmentation Function (FF) $H_{1, q}^{\varangle}$: $d \sigma_{U T} \propto \sin \left(\phi_{R S}\right) \int d x_{a} d x_{b} f_{1}\left(x_{a}\right) h_{1}\left(x_{b}\right) \frac{d \Delta \hat{\sigma}}{d \hat{t}} H_{1, q}^{\Varangle}(z, M)$

- The results from STAR agree with the theoretical prediction using SIDIS and $\mathrm{e}^{+} \mathrm{e}^{-}$data within statistical uncertainty.

Di-pion TSSA $\quad A_{U T}^{\sin \left(\phi_{S}-\phi_{R}\right)}$ from STAR.

Statistical projection of dihadron Aut measurement at sPHENIX.

- sPHENIX can extract it with great statistical uncertainty.

sPhe(x) Spin Physics at sPHENIX

JPS Conf. Proc. 37, 020118 (2022)

Hadron in Jets $p^{\uparrow}+p \rightarrow \operatorname{jet}+\mathrm{h}+X$

- Collins effect: the correlation of transverse spin of a quark and the momentum of a hadron fragment transverse to the scattered quark direction
- Collins asymmetry $A_{U T}^{\sin \left(\phi_{s}-\phi_{H}\right)}$ is related to Transversity PDF and Collins FF.

Range of expected Collins asymmetry in sPHENIX kinematics.

sphe(®) Spin Physics at sPHENIX: Speaker's Choice

Y-Jet asymmetry with $p^{\dagger}+p$: Unique channels for sPHENIX
spHE(X) Spin Physics at sPHENIX: Speaker's Choice

Y -Jet asymmetry with $\mathrm{p}^{\uparrow}+\mathrm{p}$: Unique channels for sPHENIX

Back-to-back in the transverse plane
\mathbf{Y}-Jet $p^{\uparrow}+p \rightarrow \gamma+$ jet $+X$

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

Statistical projection of γ-jet measurement at sPHENIX.
The minimum error bar in this figure: ~0.02

sphe(®) Spin Physics at sPHENIX: Speaker's Choice

Y -Jet asymmetry with $\mathrm{p}^{\uparrow}+\mathrm{p}$: Unique channels for sPHENIX

Back-to-back in the transverse plane
$\boldsymbol{\gamma}$-Jet $\quad p^{\uparrow}+p \rightarrow \gamma+$ jet $+X$
A_{N}
measurement

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

PRD 72 (2005) 054028
 IKEN BNL Research Center Building 5 IOA, Brookhaven National Laboratory Upotn, New York 11973 , USA tember 2005) Dolarized taraget Based on the the OCD factororization approach, we consider Sivers and Cowlins contributio

Statistical projection of γ-jet measurement at sPHENIX.

The minimum error bar in this figure: ~ 0.02

Back-to-back in the transverse plane

\mathbf{V}-Jet $p^{\uparrow}+p \rightarrow \gamma+$ jet $+X$

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

A_{N}

measurement

Statistical projection of γ-jet measurement at sPHENIX.

The minimum error bar in this figure: ~0.02

Spin Physics at sPHENIX: Speaker's Choice

r -Jet asymmetry with $\mathrm{p}^{\uparrow}+\mathrm{p}$: Unique channels for sPHENIX

Back-to-back in the transverse plane
\mathbf{V}-Jet $\quad p^{\uparrow}+p \rightarrow \gamma+\mathrm{jet}+X$

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

PRL 99, 212002 (2007)
PHYSICAL REVIEW LETTERS

Sivers Single-Spin Asymmetry in Photon-Jet Production
Alessandro Bacchetta, ${ }^{1}$ Cedran Bomhof, ${ }^{2}$ Umberto D'Alesio, ${ }^{3}$ Piet J. Mulders, ${ }^{2}$ and Francesco Murgia ${ }^{1}$ Theory Group, Deutsches Elektronen-Synchroton DESY, 22603 Hamburg, Germany
${ }^{2}$ Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands INFN, Sezione di Cagliari and Dipartimento di Fisica, Università di Cagliari, 09042 Monserrato, Italy
(Received 19 March 2007; published 21 November 2007)
PRL 99(2007)212002

sphe(®) Spin Physics at sPHENIX: Speaker's Choice

γ-Jet asymmetry with $\mathbf{p}^{\uparrow}+\mathrm{p}$: Unique channels for sPHENIX

Back-to-back in the transverse plane
V-Jet $p^{\uparrow}+p \rightarrow \gamma+$ jet $+X$

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

Sivers Single-Spin Asymmetry in Photon-Jet Production

Alessandro Bacchetta, ${ }^{1}$ Cedran Bomhof, ${ }^{2}$ Umberto D'Alesio, ${ }^{3}$ Piet J. Mulders, ${ }^{2}$ and Francesco Murgia ${ }^{1}$ Theory Group, Deutsches Elektronen-Synchroton DESY, 22603 Hamburg, Germany ${ }^{2}$ Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands ${ }^{3}$ INFN, Sezione di Cagliari and Dipartimento di Fisica, Universitù di Cagliari, 09042 Monserrato, Itaty (Received 19 March 2007; published 21 November 2007)

PRL 99(2007)212002

Back-to-back in the transverse plane
$\mathbf{\gamma}$-Jet $\quad p^{\uparrow}+p \rightarrow \gamma+$ jet $+X$

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

Back-to-back in the transverse plane
Y-Jet $\quad p^{\uparrow}+p \rightarrow \gamma+$ jet $+X$

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

$$
\begin{align*}
\quad \text { moment } M_{N}^{\gamma j}\left(\eta_{\gamma}, \eta_{j}, x_{\perp}\right) & =\frac{\int d \phi_{j} d \phi_{\gamma} \frac{2\left|\boldsymbol{K}_{\gamma \perp}\right|}{M} \sin (\delta \phi) \cos \left(\phi_{\gamma}\right) \frac{d \sigma}{d \phi_{j} d \phi_{\gamma}}}{\int d \phi_{j} d \phi_{\gamma} \frac{d \sigma}{d \phi_{j} d \phi_{\gamma}}} \\
& \equiv-\frac{A+B}{C} . \tag{3}
\end{align*}
$$

$$
A=x_{\perp} x_{1} x_{2} \sum_{q} \underline{\left[f_{1 T}^{\perp(1) g_{d}}\left(x_{1}\right)\right.} f_{1}^{q}\left(x_{2}\right) d \hat{\sigma}_{[g] q \rightarrow \gamma q}^{(d)}
$$

$$
+\underline{\left.f_{1 T}^{\perp(1) g_{f}}\left(x_{1}\right) f_{1}^{q}\left(x_{2}\right) d \hat{\sigma}_{[8] q \rightarrow \gamma q}^{(f)}+f_{1 T}^{\perp(1) q}\left(x_{1}\right), ~()^{\prime}\right)}
$$

$$
\left.\times\left(f_{1}^{\bar{q}}\left(x_{2}\right) d \hat{\sigma}_{[q] \bar{q} \rightarrow \gamma_{g}}+f_{1}^{g}\left(x_{2}\right) d \hat{\sigma}_{[q] g \rightarrow \gamma q}\right)\right],
$$

$$
B=x_{\perp} x_{1} x_{2} \sum_{q} h_{1}^{q}\left(x_{1}\right) h_{1}^{\perp(1) \bar{q}}\left(x_{2}\right) d \delta \hat{\sigma}_{q[[\bar{q}] \rightarrow \gamma g}
$$

$\mathbf{\gamma}$-Jet asymmetry with $\mathrm{p}^{\uparrow}+\mathrm{p}$: Unique channels for sPHENIX

Back-to-back in the transverse plane
$\boldsymbol{\gamma}$-Jet $p^{\uparrow}+p \rightarrow \gamma+$ jet $+X$

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

$$
\begin{aligned}
& \begin{array}{l}
\text { Azimuthal } \\
\text { moment }
\end{array} M_{N}^{\gamma j}\left(\eta_{\gamma}, \eta_{j}, x_{\perp}\right)=\frac{\int d \phi_{j} d \phi_{\gamma} \frac{2\left|K_{\nu}\right|}{M} \sin (\delta \phi) \cos \left(\phi_{\gamma}\right) \frac{d \sigma}{d \phi_{j} d \phi_{\gamma}}}{\int d \phi_{j} d \phi_{\gamma} \frac{d \sigma}{d \phi_{j} d \phi_{\gamma}}} \\
& \equiv-\frac{A+B}{C} . \stackrel{\mathrm{pol}}{\leftarrow \mathrm{unpol}} \\
& A=x_{\perp} x_{1} x_{2} \sum_{q} \underline{\left[f_{1 T}^{\perp(1) g_{d}}\left(x_{1}\right)\right.} f_{1}^{q}\left(x_{2}\right) d \hat{\sigma}_{[g] q \rightarrow \gamma q}^{(d)} \\
& +\underline{f_{1 T}^{\perp(1) s_{f}}\left(x_{1}\right) f_{1}^{q}\left(x_{2}\right) d \hat{\sigma}_{[8] q-\gamma q}^{()}+f_{1 T}^{\perp(1) q}\left(x_{1}\right)} \\
& \times\left(f_{1}^{\hat{q}}\left(x_{2}\right) d \hat{\sigma}_{[l] \bar{q}-r_{B}}+f_{1}^{8}\left(x_{2}\right) d \hat{\sigma}_{[q] s-\gamma q)}\right] \text {, } \\
& B=x_{\perp} x_{1} x_{2} \sum_{q} h_{1}^{q}\left(x_{1}\right) h_{1}^{1(1) \bar{q}}\left(x_{2}\right) d \delta \hat{\sigma}_{q\left[[\bar{q}]-\gamma g_{3}\right.},
\end{aligned}
$$

The first transverse moments of the Sivers function for gluon can be accessed.
_-using gluonic pole cross-section
----- using standard partonic cross-sections
.......... Maximum contribution from the gluon Sivers
-.-- Maximum contribution from the Boer-Mulders

Prediction for the azimuthal moment $M \gamma_{N}$ at $\sqrt{ } s=200 \mathrm{GeV}$.

ZDC \& SMD

TSSA of very forward neutrons from $\mathrm{p}^{\dagger}+\mathrm{p}$ collisions \propto beam polarization. Few \% of TSSA with 50\%-60\% polarized beam is expected (PRD88(2013)032006).

Square root asym.: $A(\phi) \equiv \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}$

ZDC \& SMD

TSSA of very forward neutrons from $\mathrm{p}^{\dagger}+\mathrm{p}$ collisions \propto beam polarization. Few \% of TSSA with 50\%-60\% polarized beam is expected (PRD88(2013)032006).

Square root asym.: $A(\phi) \equiv \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}$

$A(\phi) \sim-1.5 \% \xrightarrow{\phi} \xrightarrow{\mathrm{rad}} 30 \%$ beam polarization

SPHENIX
 sPHENIX Today: Essential Detectors for Spin Physics

 ZDC \& SMDTSSA of very forward neutrons from $\mathrm{p}^{\dagger}+\mathrm{p}$ collisions \propto beam polarization. Few \% of TSSA with 50\%-60\% polarized beam is expected (PRD88(2013)032006).

Square root asym.: $A(\phi) \equiv \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}$

$A(\phi) \sim-1.5 \% \rightarrow 30 \%$ beam polarization

INTT

INTT is the only tracking detector in sPHENIX that has enough timing resolution to identify bunch-crossing.
Currently,

- the healthy operation was confirmed by vertexing and tracking using INTT alone.
- INTT was timed in within a single beam clock. We can identify bunch-crossing with INTT.

06/10/2024

- sPHENIX, a state-of-the-art jet detector at RHIC, studies QGP and Cold-QCD. It consists of
- Hcal and EMcal
- Superconducting solenoid magnet
- Tracking detectors at the central rapidity $|n|<1.1$: TPC, TPOT, INTT, and MVTX
- Forward detectors: sEPD, MBD, and ZDC
- Measurement with $\mathrm{p}^{\uparrow}+\mathrm{p}^{\uparrow}$ collisions enables us to study
- Tri-gluon correlator
- Sivers TMD PDF, Transversity PDF
- Collins FF, Interference FF
- etc.
- The construction was finished last year.
- We are taking $\mathrm{p}^{\uparrow}+\mathrm{p}^{\uparrow}$ data for spin physics now!

