# 2024 RHIC/AGS Annual Users' Meeting 11/June/2024 – 14/June/2024 **Prospects with the sPHENIX** Genki Nukazuka (RIKEN/RBRC) R ( , on behalf of the sPHENIX Collaboration







- sPHENIX Collaboration
  - Physics Programs
  - Detector
  - Runs
- Spin physics at sPHENIX
- sPHENIX Today: Essential detectors for spin physics

2



### Relativistic Heavy Ion Collider (RHIC)

- First collisions in 2000
- p+p, Au+Au, O+O, etc
- $p^{\rightarrow(\uparrow)} + p^{\rightarrow(\uparrow)}$
- √s<sub>NN</sub> ~ 7 500 GeV







ran at RHIC from 2001 to 2016. They contributed to the discovery of Quark-Gluon Plasma (QGP) and the study of proton spin structure. Data analysis is still continuing.



- State-of-the-Art Jet Detector at RHIC
- The collaboration was formed in 2016.
- Quark-Gluon Plasma (QGP) and Cold-QCD
- About 400 members from 81 institutions and 14 countries
- Home Page: <u>https://www.sphenix.bnl.gov/</u>













### The sPHENIX detector





## The sPHENIX detector

• full azimuthal angle  $2\pi$  and  $|\eta| < 1.1$  coverage in  $|z_{vtx}| < 10$  cm

HCal (outer)

HCal (Inner)

Magnet

**EMCal** 

TPC

INTT

**MVTX** 

- 1.4 T Babar solenoid magnet
- the hadronic & electromagnetic calorimeters (the first HCAL in midrapidity at RHIC)
- 3 tracking detectors in midrapidity (TPC (+TPOT), INTT, and MVTX)
- 3 general detectors in forward region (MBD, sEPD, and ZDC/SMD)







# SPHENX Plan and Status

### sPHENIX Beam Use Proposal 2023 (not all shown)

| Year | Beam    | √s <sub>NN</sub><br>(GeV) | Data<br>taking<br>(week) | Luminosity<br>( z  < 10 cm<br>Becorded Sar |       |
|------|---------|---------------------------|--------------------------|--------------------------------------------|-------|
| 2023 | Au + Au | 200                       | 9                        | 3.7-nb-1                                   | 4.5 n |
| 2024 | p↑+ p↑  | 200                       | 17                       | 0.44 pb <sup>-1</sup><br>(5 kHz)           | 31 pl |
| 2024 | Au + Au | 200                       | 3                        | 0.4 nb <sup>-1</sup>                       | -     |
| 2025 | Au + Au | 200                       | 24.5                     | 6.3 nb <sup>-1</sup>                       |       |





# SPHENIX Plan and Status

### sPHENIX Beam Use Proposal 2023 (not all shown)

| Year | Beam    | √s <sub>NN</sub><br>(GeV) | Data<br>taking | Luminosity,<br>( z  < 10 cm)     |              |
|------|---------|---------------------------|----------------|----------------------------------|--------------|
|      |         |                           | (week)         | Recorded                         | Samp         |
| 2023 | Au + Au | 200                       | 9              | 3.7 nb <sup>-1</sup>             | <u>4.5 n</u> |
| 2024 | p⁺+ p†  | 200                       | 17             | 0.44 pb <sup>-1</sup><br>(5 kHz) | 31 pl        |
| 2024 | Au + Au | 200                       | 3              | 0.4 nb <sup>-1</sup>             | _            |
| 2025 | Au + Au | 200                       | 24.5           | 6.3 nb <sup>-1</sup>             | _            |

✓ ~Nov/2023: TPC maintenance started
✓ Feb/2024: End of TPC maintenance
✓ Mar/2024: INTT and MVTX were reinstalled and tested.
✓ Mar/2024: MBD was reinstalled.
✓ April/2024: sEPD reinstallation



7

## **Plan and Status** SPHENIX

### sPHENIX Beam Use Proposal 2023 (not all shown)

| Year | Beam    | √s <sub>NN</sub><br>(GeV) | Data<br>taking | Luminosity,<br>( z  < 10 cm)     |              |
|------|---------|---------------------------|----------------|----------------------------------|--------------|
|      |         |                           | (week)         | Recorded                         | Samp         |
| 2023 | Au + Au | 200                       | 9              | 3.7 nb <sup>-1</sup>             | <u>4.5 n</u> |
| 2024 | p⁺+ p†  | 200                       | 17             | 0.44 pb <sup>-1</sup><br>(5 kHz) | 31 pl        |
| 2024 | Au + Au | 200                       | 3              | 0.4 nb <sup>-1</sup>             | _            |
| 2025 | Au + Au | 200                       | 24.5           | 6.3 nb <sup>-1</sup>             | _            |

✓ ~Nov/2023: TPC maintenance started ✓ Feb/2024: End of TPC maintenance  $\checkmark$  Mar/2024: INTT and MVTX were reinstalled and tested. ✓ Mar/2024: MBD was reinstalled. ✓ April/2024: sEPD reinstallation



8

# SPHENIX Plan and Status

### sPHENIX Beam Use Proposal 2023 (not all shown)

| Year | Beam    | √s <sub>NN</sub><br>(GeV) | Data<br>taking | Luminosity,<br>( z  < 10 cm)     |              |
|------|---------|---------------------------|----------------|----------------------------------|--------------|
|      |         |                           | (week)         | Recorded                         | Samp         |
| 2023 | Au + Au | 200                       | 9              | 3.7 nb <sup>-1</sup>             | <u>4.5 n</u> |
| 2024 | p⁺+ p†  | 200                       | 17             | 0.44 pb <sup>-1</sup><br>(5 kHz) | 31 pl        |
| 2024 | Au + Au | 200                       | 3              | 0.4 nb <sup>-1</sup>             | _            |
| 2025 | Au + Au | 200                       | 24.5           | 6.3 nb <sup>-1</sup>             | _            |

✓ ~Nov/2023: TPC maintenance started
✓ Feb/2024: End of TPC maintenance
✓ Mar/2024: INTT and MVTX were reinstalled and tested
✓ Mar/2024: MBD was reinstalled.
✓ April/2024: sEPD reinstallation





- sPHENIX Collaboration
  - Physics Programs
  - Detector
  - Runs
- Spin physics at sPHENIX
- sPHENIX Today: Essential detectors for spin physics







The projected total yield from p + p or p + Au at sPHENIX.



11



## **Direct photon** $p^{\uparrow} + p \rightarrow \gamma + X$

Only the initial state effect is involved.

Statistical projection of direct

- Tri-gluon correlation function in the collinear twist-3 framework can be studied.
- It's connected with the gluon Sivers TMD PDF.
- PHENIX reported the first measurement of A<sub>N</sub> from the direct photon.
- sPHENIX can improve the statistics of the measurement significantly.









# **Prompt D**<sup>0</sup> $p^{\uparrow} + p \rightarrow D^0 / \bar{D^0} + X$





## Jet measurements: Jet, Dijet, and $\gamma$ -Jet

## **Inclusive jet** $p^{\uparrow} + p \rightarrow \text{jet} + X$

- TSSA has not been measured at central rapidity.
- sPHENIX can provide measurements with uncertainties at the level of 10<sup>-4</sup>.
- Flavor separation by tagging leading hadron charge.

**Dijet**  $p^{\uparrow} + p \rightarrow \text{jet} + \text{jet} + \frac{1}{p} X$ 

- Direct access to par
- STAR preliminary re: charge-tagged jets.
- sPHENIX will signific

**y-Jet**  $p^{\uparrow} + p \rightarrow \gamma + jet + jet$ 

• discussed later





(arXiv:2305.10359)



### **Statistical projection of dijet** measurement at sPHENIX.







- The results from STAR agree with the theoretical prediction using SIDIS and e<sup>+</sup>e<sup>-</sup> data within statistical uncertainty.
- sPHENIX can extract it with great statistical uncertainty.







- The results from STAR agree with



## **Hadron in Jets** $p^{\uparrow} + p \rightarrow jet + h + X$

- Collins effect: the correlation of transverse spin of transverse to the scattered quark direction
- Collins asymmetry  $A_{IT}^{\sin(\phi_S \phi_H)}$  is related to Transversity PDF and Collins FF.











Back-to-back in the transverse plane **y-Jet**  $p^{\uparrow} + p \rightarrow \gamma + \text{jet} + X$ 

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.





# **Spin Physics at sPHENIX: Speaker's Choice**

## **Y-Jet asymmetry with p<sup>+</sup>+p: Unique channels for sPHENIX**



### Statistical projection of γ-jet measurement at sPHENIX.

The minimum error bar in this figure: ~0.02







Back-to-back in the transverse plane **y-Jet**  $p^{\uparrow} + p \rightarrow \gamma + \text{jet} + X$ 

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

AN measurement



# **Spin Physics at sPHENIX: Speaker's Choice**





### Statistical projection of γ-jet measurement at sPHENIX.

The minimum error bar in this figure: ~0.02







Back-to-back in the transverse plane **y-Jet**  $p^{\uparrow} + p \rightarrow \gamma + \text{jet} + X$ 

- Gluon Sivers effect can be accessed.

AN measurement



# **Spin Physics at sPHENIX: Speaker's Choice**



Back-to-back in the transverse plane **y-Jet**  $p^{\uparrow} + p \rightarrow \gamma + \text{jet} + X$ 

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

PRL 99, 212002 (2007)

PHYSICAL REVIEW LETTERS

week ending 23 NOVEMBER 2007

### Sivers Single-Spin Asymmetry in Photon-Jet Production

Alessandro Bacchetta,<sup>1</sup> Cedran Bomhof,<sup>2</sup> Umberto D'Alesio,<sup>3</sup> Piet J. Mulders,<sup>2</sup> and Francesco Murgia<sup>3</sup>

<sup>1</sup>Theory Group, Deutsches Elektronen-Synchroton DESY, 22603 Hamburg, Germany <sup>2</sup>Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands <sup>3</sup>INFN, Sezione di Cagliari and Dipartimento di Fisica, Università di Cagliari, 09042 Monserrato, Italy (Received 19 March 2007; published 21 November 2007)

PRL 99(2007)212002





Back-to-back in the transverse plane **y-Jet**  $p^{\uparrow} + p \rightarrow \gamma + \text{jet} + X$ 

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.



PRL 99, 212002 (2007)

Alessandro Bacchetta,<sup>1</sup> Cedran Bomhof,<sup>2</sup> Umberto D'Alesio,<sup>3</sup> Piet J. Mulders,<sup>2</sup> and Francesco Murgia<sup>3</sup> <sup>1</sup>Theory Group, Deutsches Elektronen-Synchroton DESY, 22603 Hamburg, Germany <sup>2</sup>Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands <sup>3</sup>INFN, Sezione di Cagliari and Dipartimento di Fisica, Università di Cagliari, 09042 Monserrato, Italy (Received 19 March 2007; published 21 November 2007)

# **Spin Physics at sPHENIX: Speaker's Choice**

PHYSICAL REVIEW LETTERS

week ending 23 NOVEMBER 2007

### Sivers Single-Spin Asymmetry in Photon-Jet Production







Back-to-back in the transverse plane **y-Jet**  $p^{\uparrow} + p \rightarrow \gamma + \text{jet} + X$ 

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.



# **Spin Physics at sPHENIX: Speaker's Choice**





Back-to-back in the transverse plane **y-Jet**  $p^{\uparrow} + p \rightarrow \gamma + \text{jet} + X$ 

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.



$$\sum_{q} h_1^q(x_1) h_1^{\perp(1)\bar{q}}(x_2) d\delta \hat{\sigma}_{q^{\dagger}[\bar{q}]} \to \gamma_g,$$





Back-to-back in the transverse plane **y-Jet**  $p^{\uparrow} + p \rightarrow \gamma + \text{jet} + X$ 

- Gluon Sivers effect can be accessed.



# **Spin Physics at sPHENIX: Speaker's Choice**

 $M_{\gamma i_N}$  at  $\sqrt{s} = 200$  GeV.





# sPHENIX Today: Essential Detectors for Spin Physics









# sPHENIX Today: Essential Detectors for Spin Physics

INTT is the only tracking detector in sPHENIX that has enough timing resolution to identify bunch-crossing. Currently,

- the healthy operation was confirmed by vertexing and tracking using INTT alone.
- INTT was timed in within a single beam clock. We can identify bunch-crossing with INTT.



sPHENIX started taking physics data for spin since June 9th.









- - Hcal and EMcal
  - Superconducting solenoid magnet
  - Tracking detectors at the central rapidity  $|\eta| < 1.1$ : TPC, TPOT, INTT, and MVTX
  - Forward detectors: sEPD, MBD, and ZDC
- Measurement with  $p^{\uparrow} + p^{\uparrow}$  collisions enables us to study •
  - Tri-gluon correlator
  - Sivers TMD PDF, Transversity PDF
  - Collins FF, Interference FF
  - etc.
- The construction was finished last year.
- We are taking  $p^{\uparrow} + p^{\uparrow}$  data for spin physics now!

### • sPHENIX, a state-of-the-art jet detector at RHIC, studies QGP and Cold-QCD. It consists of



