Photoproduction in UPCs at RHIC

Ashik Ikbal Sheikh
(For the STAR Collaboration)

Kent State University

Supported in part by
U.S. DEPARTMENT OF
Energy
Office of Science
The strongest EM-fields in heavy ion collisions

- In heavy ion collisions,
 \[E_{\text{max}} = 10^{18} \, \text{V/m} , \quad B_{\text{max}} \sim 10^{14} - 10^{18} \, \text{T} \]

 \[\Rightarrow \text{Strongest EM-field in the universe, but transient} \]

- EM-field treated in terms of quasi-real photons
 \[W_{\gamma,\text{max}} \sim \gamma \hbar c/R ; \]
 \[W_{\gamma,\text{max}} \sim 3 \, \text{GeV (RHIC)} \]
 \[W_{\gamma,\text{max}} \sim 80 \, \text{GeV (LHC)} \]

\[\Rightarrow \text{EM-fields are quantized as photons} \]
Heavy Ions miss each other: Ultra-peripheral Collisions (UPCs)

Collisions where nuclei do NOT collide

No hadronic collisions happen

Ions interact through photon-ion and photon-photon collisions

=> Called Ultra-peripheral collisions (UPCs)
Photoproduction of Vector Mesons (VM) in UPC

\[
\text{Au} + \gamma \rightarrow \bar{q}q \rightarrow \text{VM (J/\psi, } \rho^0, \ldots)\]

\[
\text{Au} + \gamma \rightarrow \text{VM (J/\psi, } \rho^0, \ldots) \rightarrow \text{Au*} \]

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
UPC VM: Powerful probe of parton densities inside nuclei

- Probes parton density & fluctuations inside nuclei—constraints for A+A initial state
- Modification of parton densities in heavy nuclei

=> VMs help to probe parton density inside nuclei before EIC era
UPC events with STAR detector

- Neutron(s) detected in ZDCs
- ZDC signals show peak structure for neutrons
- No activity in both BBCs => Diffractive events (η-gap)

=> Method to trigger UPC events

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
\(\text{J}/\psi \) measurements in 200 GeV Au+Au UPCs

\[\text{Au+Au} \rightarrow e^+e^-+e^+e^-+e^+e^-+ \sqrt{s_{\text{NN}}} = 200 \text{ GeV} \]

\(\left| y_{ee} \right| < 1.0 \)

\(p_{T,ee} < 0.15 \text{ GeV}/c \)

\(\chi^2/\text{NDF} = 75.5/52 \)

- Data, all \(n \)
- coh J/\psi
- inc J/\psi
- inc J/\psi N diss
- coh \(\psi(2S) \)
- coh \(\psi(2S) \rightarrow J/\psi + X \)
- QED 2\(\gamma \)
- MC sum

\(m_{ee} \) distribution

\(\text{p}_{T} \) distribution

\(|y_{ee}| < 1.0 \)

\(3.0 < m_{ee} < 3.2 \)

\(\chi^2/\text{NDF} = 41.4/28 \)

=> Coherent and incoherent contributions can be disentangled via the combined fit of mass and \(p_T \).
Rapidity dependence J/ψ production cross-section

- Measured for coherent and incoherent contributions for different neutron emission in ZDCs
- Systematic unc. in incoherent to coherent cross-section ratio are largely cancelled
- Sensitive to the nuclear structure and deformation

=> Important to constrain theoretical models related to nuclear geometry

STAR, arXiv:2311.13637

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
Incoherent production compared with H1 data with free proton

Strong nuclear suppression (~49%) seen (Mäntysaari et. al, Phys. Rev. Lett. 117 (2016) 5, 052301)

Models found H1 data supports sub-nucleonic fluctuations (Mäntysaari et. al, Phys. Rev. D 106 (2022) 7, 074019)

STAR data shows the bound nucleon has similar shape as the free proton — similar sub-nucleonic fluctuations in heavy nuclei

=> Strong nuclear suppression and sub-nucleonic fluctuations in Au nucleus

STAR, arXiv:2311.13632

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
VM spin interference: A novel quantum phenomenon for high resolution gluon imaging
Polarized Photons from colliding nuclei

Transverse view of Lorentz contracted nuclei

=> Photons in UPC are linearly polarized

Experimental access to photon polarization demonstrated by STAR, measuring the Breit-Wheeler process, $\gamma\gamma \rightarrow e^+e^-$

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
UPC vector meson spin and decay daughters are correlated

Polarization of photon → Inherited by VM

Decay VM → d_1d_2 daughters preferentially emitted (L+S conservation)

=> The cos(2φ) modulation in VM momentum distribution w.r.t photon polarization direction
Measuring the modulation over a large no. of events

Photon polarization correlated with Impact parameter —> random from one event to the next

=> Event average washes out the cos(2φ) modulation w.r.t photon polarization direction
Two independent paths of VM production

\[\text{PATH - 1} \]

\[\text{PATH - 2} \]

=> The paths are indistinguishable

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
Photon source ambiguity: Interference among amplitudes of two possible paths

Interference makes the modulation observable in experiment

=> Two indistinguishable paths may interfere and make the cos(2\(\phi\)) modulation observable

Best analogy: Double slit experiment in Optics
Observation of interference for $\rho^0 \rightarrow \pi^+\pi^-$ at STAR

STAR, Sci. Adv. 9, eabq3903 (2023)

Observed the interference for coherent ρ^0 photoproduction in UPCs

Measured in 3 different collision systems: Au+Au, U+U, p+Au \rightarrow Sensitive to nuclear shape/size
The p_T dependence of interference for $\rho^0 \rightarrow \pi^+ \pi^-$ at STAR

Clear p_T dependence of interference observed

Interference gets weak at higher p_T — Incoherent processes take over

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
Impact of spin interference on $|t|$ distribution studied in different ϕ bins

Improved measurement of mass radii using spin interference effect

$R (Au) = 6.53 \pm 0.06 \text{ fm}; \quad R (U) = 7.29 \pm 0.08 \text{ fm}$
Spin interference with $J/\psi \rightarrow e^+e^-$

$J/\psi \rightarrow e^+e^-$

Boson Fermions

Mass: 0.7 GeV/c2
Lifetime: 1.3 fm/c

Mass: 3.1 GeV/c2
Lifetime: 2160 fm/c

Measured sign of the interference tells us the level of interference

J/ψ heavier than ρ^0 and J/ψ has much longer lifetime

J/ψ decay length much longer than typical distance b/w two colliding nuclei in UPCs

\rightarrow Probes finer structure and captures high quality images of the gluon distributions

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
Observed spin interference for $J/\psi \rightarrow e^+e^-$

Interference cos(2\(\phi\)) pattern

Observed spin interference for $J/\psi \rightarrow e^+e^-$

Observable for J/ψ spin interference

Interference signal fitted with: $1 + a_2 \cos(2\phi)$

a_2 is the measure of the modulation

$p_T < 200$ MeV/c

$2.95 < m_{e^+e^-} < 3.2$ GeV/c^2

STAR Preliminary

$|f(\phi)| = 1 + a_2 \cos(2\phi)$

$a_2 = 0.102 \pm 0.027 \pm 0.029$

Data

Fit

$\pm 1\sigma$

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
Corrections of interference signal due to 2γ background

- The $\gamma + \gamma \rightarrow e^+ + e^-$ has also the J/Ψ interference like pattern due to detector effect.

- We correct for the 2γ process with: $a_2 = f \times a^{bkg}_2 + (1-f) \times a^{sig}_2$, with $f = \frac{N_{bkg}}{N_{sig} + N_{bkg}}$

=> Background correction is done to extract true modulation signal.

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
We considered the Bremsstrahlung process and $J/\Psi \rightarrow e^+ + e^- + \gamma$, using the STARLight+Geant simulations.

Bremsstrahlung correction performed for true modulation signal.
Signal for J/ψ Spin interference

- Measured and corrected signal for J/Ψ spin interference:

 $$a_2 = 0.102 \pm 0.027 \pm 0.029$$

- Measurement has $\sim 3\sigma$ significance above zero

- Compared with STARLight and theory calculations

- STARLight has no spin interference physics — consistent with zero

- Theory (Diffractive+Interference) predicts negative modulation

=> Observed spin interference signal $\sim 10\%$ in the measured kinematic range

Graphical Representation

![Graph showing measured and corrected signal for J/ψ spin interference.](image)
The p_T-dependent interference of J/ψ

- Interference signal shows strong p_T dependence and rises toward positive.
- STARLight predicts zero.
- Diffractive+interference calculations are negative at low and high p_T.
- Diffractive+interference with additional soft γ radiation predicts negative at low p_T and rises towards positive value at higher p_T.

\Rightarrow Modulation strength in data positively increases with p_T in the measured kinematics.

Diff+Int+Rad predictions: Brandenburg et. al, Phys. Rev. D 106, 074008 (2022)

Ashik Ikbal, RHIC/AGS AUM 2024, BNL, USA
Summary and take home

- Measured the coherent and incoherent J/ψ production in Au+Au UPCs
- STAR observed the spin interference of the photoproduced ρ⁰ and J/ψ
- Measured interference signal increases with p_T
- Measurements are sensitive to nuclear geometry and useful to constrain the theoretical models
- RHIC, LHC and future EIC experiments can provide further insights into these
Backup
Main central barrel detectors for UPC measurements: TPC, TOF, BEMC

Forward detectors: BBC or EPD, ZDC