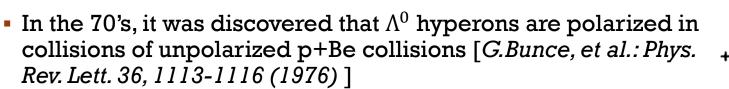
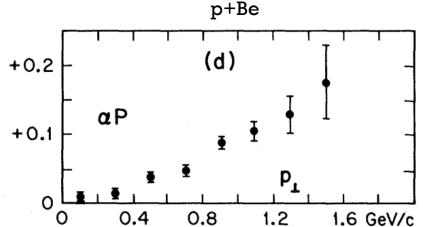


Supported in part by:



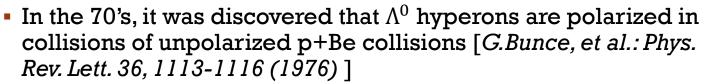
Office of Science


Measurement of Λ hyperon polarization and spin-spin correlations in p+p collisions by the STAR experiment

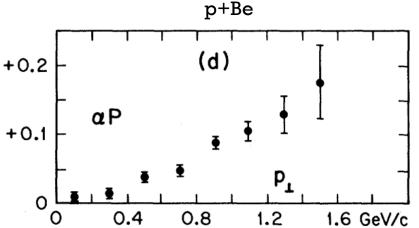
Jan Vanek, for the STAR Collaboration Brookhaven National Laboratory AGS/RHIC Annual Users' Meeting 06/11/2024

A POLARIZATION PUZZLE

- Over nearly 50 years, Λ⁰ polarization has been seen in p+p, p+A, e+p, e⁺e⁻ collisions up to collision energies about 40 GeV
- These indicate the importance of final-state effects, e.g., fragmentation and hadronization



Phys. Rev. Lett. 36, 1113-1116 (1976)



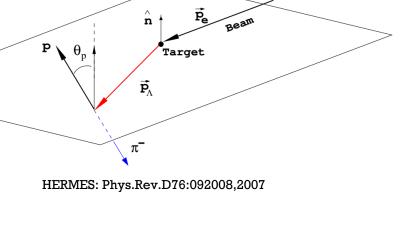
A POLARIZATION PUZZLE

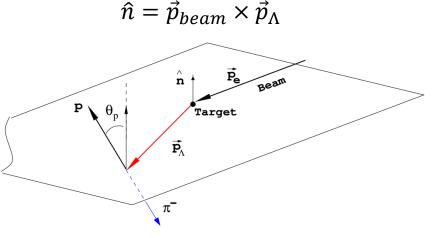
- Over nearly 50 years, Λ⁰ polarization has been seen in p+p, p+A, e+p, e⁺e⁻ collisions up to collision energies about 40 GeV
- These indicate the importance of final-state effects, e.g., fragmentation and hadronization

Phys. Rev. Lett. 36, 1113-1116 (1976)

What is the origin of the Λ^0 polarization?

- Does polarization of Λ^0 depend on spin of the target/projectile?
- Is there a contribution of an **initial-state** effect?
- Will parton spin correlation and entanglement manifest in Λ⁰ polarization?
 [W. Gong, et al.: Phys. Rev. D 106 (2022) 3, L031501]

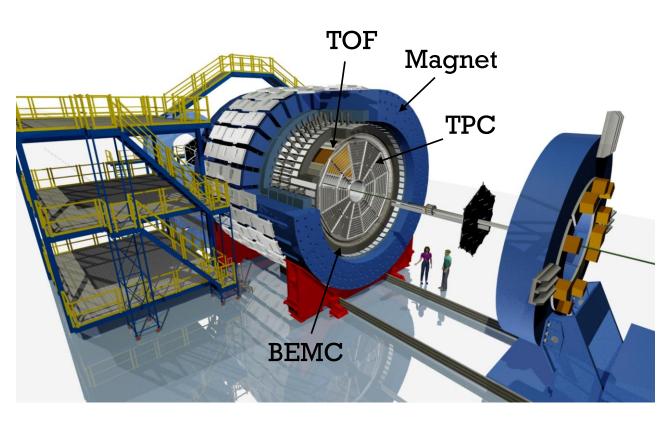



A POLARIZATION MEASUREMENT

- Single Λ^0 polarization is measured via $\Lambda^0 \rightarrow p\pi^+$ decay channel with $BR = (64.1 \pm 0.5)\%$. In the Λ^0 rest frame, protons are emitted preferentially in the direction of Λ^0 spin
- The distribution of protons in Λ^0 rest frame is then given by:

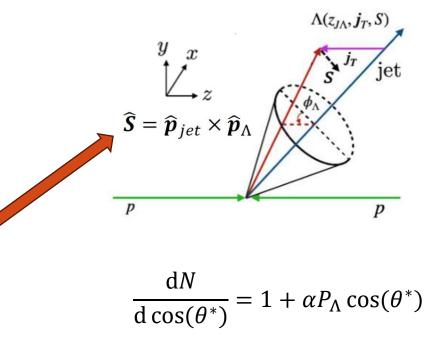
$$\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = \mathbf{1} + \alpha P_{\Lambda}\cos(\theta^*)$$

- P_{Λ} is the Λ^0 polarization
- $\Lambda^0: \alpha_+ = 0.732 \pm 0.014, \ \overline{\Lambda^0}: \alpha_- = -0.758 \pm 0.012$
- \hat{n} is normal vector to the production plane
- Angle (θ^* , or θ_p) is measured between \widehat{n} and momentum of proton (p) in Λ 's rest frame



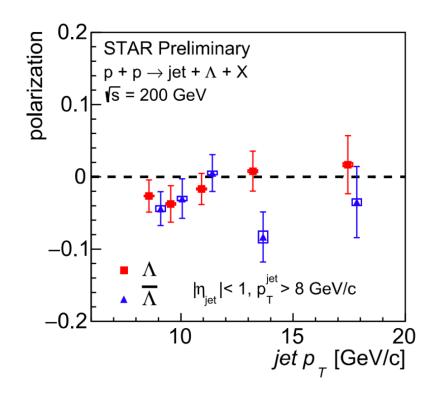
SOLENOIDAL TRACKER AT RHIC (STAR)

- Solenoidal magnet
 - 0.5 T magnetic field with low $p_{\rm T}$ coverage
- Time Projection Chamber (TPC)
 - Measurement of charged particle transverse momentum (p_T)
 - Particle identification based on energy loss in TPC gas
 - Full azimuthal coverage for $|\eta|<1$
- Time-of-Flight detector (TOF)
 - Particle identification
 - Full azimuthal coverage for $|\eta| < 0.9$
- Barrel Electromagnetic Calorimeter (BEMC)
 - Reconstruction of jets, photons, π^0, \dots
 - Full azimuthal coverage for $|\eta| < 1$



A POLARIZATION IN JETS

- Measurement of transverse polarization of Λ^0 and $\overline{\Lambda}^0$ hyperons in jets gives access to polarizing fragmentation functions (pFFs)
- Test of universality of the pFFs with results from SIDIS and $e^+ + e^-$
- Polarization measured with respect to the jet axis
 - Angle θ^* measured between \hat{S} and momentum of proton in Λ 's rest frame



A POLARIZATION IN JETS – RESULTS

- Transverse polarization of Λ^0 and $\overline{\Lambda}{}^0$ hyperons in jets
- No significant p_T dependence
 - Hint non-zero polarization for $\overline{\Lambda}^0$ at 2σ level

New data for pFFs

SPIN TRANSFER MEASUREMENT WITH Λ

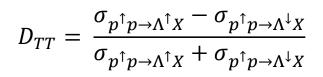
- Measurements with longitudinally polarized $p^+ + p$ collisions
- Longitudinal spin transfer D_{LL} of Λ and $\overline{\Lambda}$ hyperons
 - Sensitive to helicity distributions of s and s quarks via polarized fragmentation functions
 - Polarization P_{Λ} measured with respect to hyperon momentum in laboratory frame (CMS frame of p + p)

$$D_{LL} = \frac{\sigma_{p^+p \to \Lambda^+ X} - \sigma_{p^+p \to \Lambda^- X}}{\sigma_{p^+p \to \Lambda^+ X} + \sigma_{p^+p \to \Lambda^- X}}$$

$0 < \eta_{1} < 1.2$ $\Lambda 2009 + 2015$ STAR 0.05 • $\overline{\Lambda}$ 2009 + 2015 픚 LM Λ \longrightarrow LM $\overline{\Lambda}$ -0.05-0.05 - DSV $\Lambda + \overline{\Lambda}$ scen.1 ---- DSV $\Lambda + \overline{\Lambda}$ scen.2 -0.05 $p_{T, \Lambda(\overline{\Lambda})}$ (GeV/c) STAR $\vec{p} + p \rightarrow \vec{\Lambda} + X, \quad \sqrt{s} = 200 \text{ GeV}$ $\alpha_{1,\infty} = \pm 0.732, \ p_{T}^{jet} > 5 \text{ GeV}$ $+\overline{\Lambda}$ scen.] -0.05 $0 < \eta_{int} < 1.0$ (a) 0.05 -0.05 $-1.0 < \eta_{iot} < 0$ (b) (GeV/c)(c) 06/11/2024 STAR, PRD 109, 12004 (2024)

LONGITUDINAL SPIN TRANSFER

- Longitudinal spin transfer D_{LL} of Λ^0 and $\overline{\Lambda}^0$ hyperons measured in $\vec{p} + p$ collisions at $\sqrt{s} = 200 \text{ GeV}$
- Consistent results between Λ^0 and $\overline{\Lambda}^0$ hyperons
- Data compared to certain polarized FFs scenarios:
 - 1: Λ^0 polarization given by *s* quark
 - 2: u and d quarks contribute to the Λ^0 polarization, but with opposite sign as the s quark
 - 3: All u, d, and s quarks contribute to the Λ^0 polarization, but with the same sign
- Data strongly disfavor scenario 3
- The z dependence directly probes polarized fragmentation function

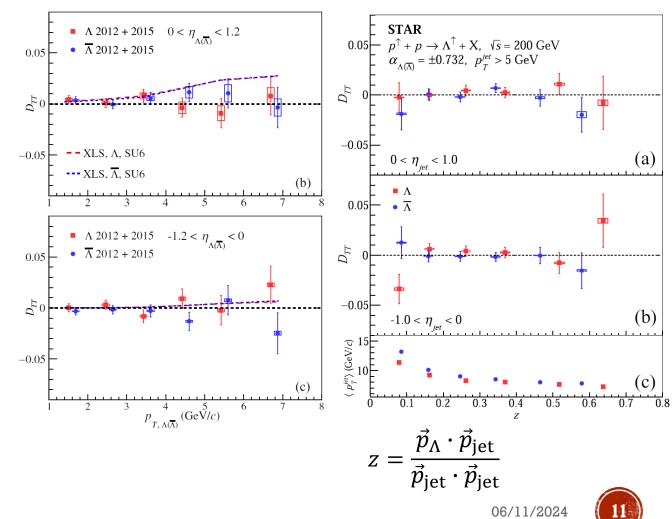

Models:

D. de Florian et al, PRL 81, 530 (1998) Z.B. Kang et al, PLB 809, 135756 (2020)

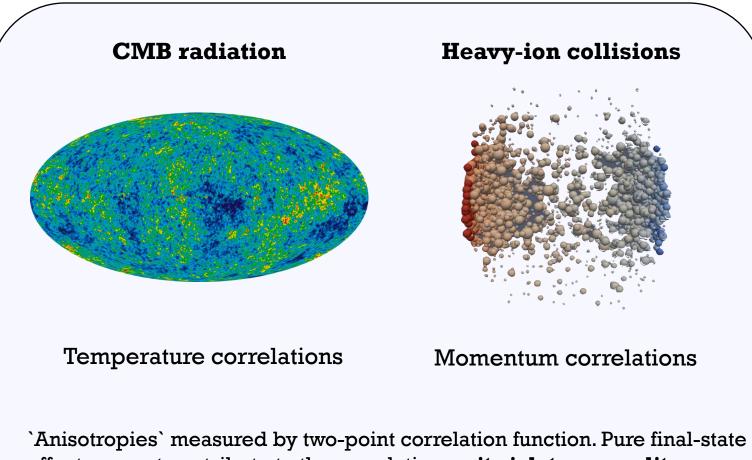
Jan Vanek, AGS/RHIC AUM 2024

SPIN TRANSFER MEASUREMENT WITH A

- Measurements with transversely polarized $p^{\uparrow} + p$ collisions
- Transverse spin transfer D_{TT} of Λ and $\overline{\Lambda}$ hyperons
 - Sensitive to transversity distributions of s and \bar{s} quarks via transversely polarized fragmentation functions
 - Polarization P_{Λ} measured with respect to the jet axis used as a substitute for the direction of the outgoing fragmenting quark



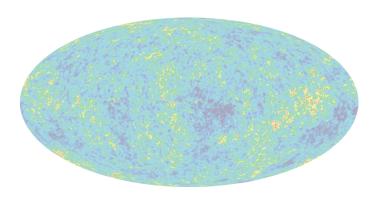
TRANSVERSE SPIN TRANSFER



- Transverse spin transfer D_{TT} of Λ^0 and $\overline{\Lambda}^0$ hyperons measured in $p^{\uparrow} + p$ collisions at $\sqrt{s} = 200 \text{ GeV}$
- Consistent results between Λ^0 and $\overline{\Lambda}{}^0$ hyperons
- Data consistently below prediction by models at high p_T
 - Phys. Rev. D 70, 034015 (2004)
 - Phys. Rev. D 73, 077503 (2006)
- The z dependence directly probes transversely polarized fragmentation function

STAR, PRD 109, 12004 (2024)

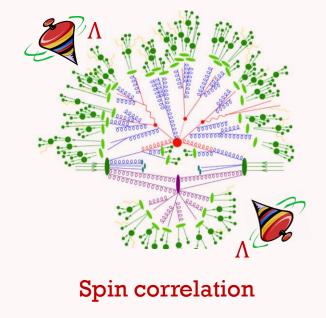
MOTIVATION FOR A SPIN-SPIN CORRELATIONS



effects cannot contribute to the correlation as it violates causality.

MOTIVATION FOR A SPIN-SPIN CORRELATIONS

CMB radiation


Temperature correlations

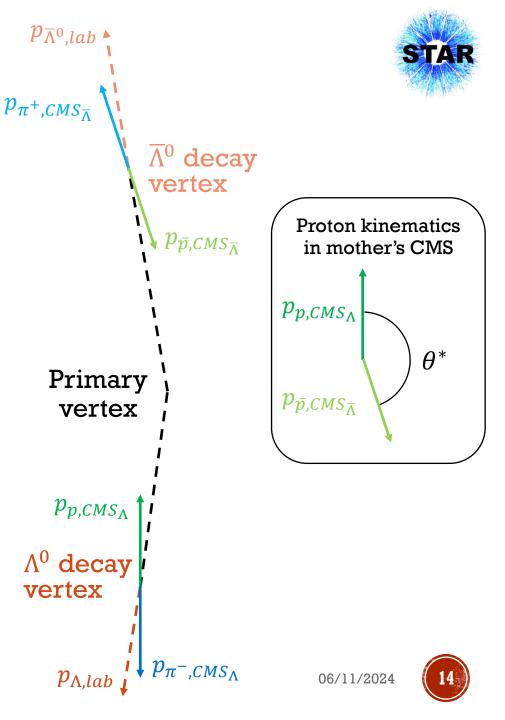
Momentum correlations

`Anisotropies` measured by two-point correlation function. Pure final-state effects cannot contribute to the correlation **as it violates causality**.

Heavy-ion collisions

Proton-Proton collisions

A (more) direct probe to the initial-state parton spin effects



A SPIN-SPIN CORRELATIONS

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \rightarrow p\pi^+$ and charge conjugate
 - $p_{\Lambda^0,lab} = p_{p,lab} + p_{\pi^-,lab}$
- Boost (anti-)proton from decay of the corresponding Λ^0 $(\overline{\Lambda})$ to rest frame of its mother
 - Proton momenta in mother rest frame: $p_{p,CMS_{\Lambda}}$, $p_{\bar{p},CMS_{\bar{\Lambda}}}$
- Measure angle $heta^*$ between the two boosted protons
 - The distribution of pair angle is given by:


 $\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} \sim 1 + \alpha_1 \alpha_2 P_{\Lambda_1 \Lambda_2} \cos(\theta^*)$

- α_1 and α_2 are α_+ or α_- , depending on Λ^0 hyperon pair
- A non-zero $P_{\Lambda_1\Lambda_2}$ would indicate spin correlation between the two Λ^0 ($\overline{\Lambda}^0$) hyperons

A SPIN-SPIN CORRELATIONS – RESULTS

- $P_{\Lambda_1\Lambda_2}$ are consistent with zero within uncertainties
- Hint of spin-spin correlation signal for $\Lambda^0\overline{\Lambda}^0$ pairs at 2σ statistical significance
- Data suggest no significant spin-spin correlation of initial state s (anti-)quark pair
 - This measurement provides upper limit on Λ^0 hyperon spin-spin correlations in p+p collisions at $\sqrt{s} = 200 \text{ GeV}$
- First experimental search for Λ^0 hyperon spin-spin correlations

SUMMARY

- First experimental measurement of transverse polarization of Λ^0 in jets in p + p collisions
 - Λ^0 polarization found consistent with 0
 - $\overline{\Lambda}^0$ shows hint of 2σ polarization
- Improved measurement of D_{LL} and D_{TT} of Λ^0 and $\overline{\Lambda}^0$ in polarized p + p collisions
 - First measurement as a function of z in p + p collisions
 - D_{LL} : Disfavors one extreme scenario about polarized FFs
 - D_{TT} : Data below model prediction at high p_T
- First experimental search for Λ^0 hyperon spin-spin correlations in p + p collisions
 - It is found consistent with zero within uncertainty, although uncertainty is large
 - This new approach provides additional insights to the initial-state parton spin effects

THANK YOU FOR ATTENTION

