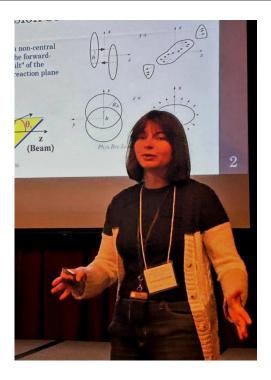

Workshop Report: Beam Energy Scan

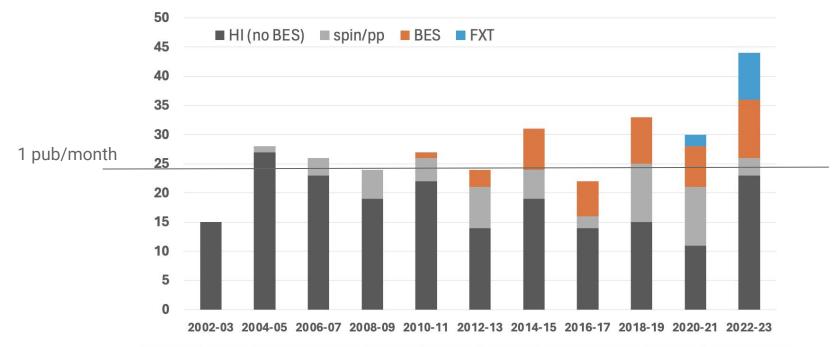

Yevheniia Khyzhniak on behalf of BES Workshop

3 Organizers

Zhiwan Xu

Zach Sweger

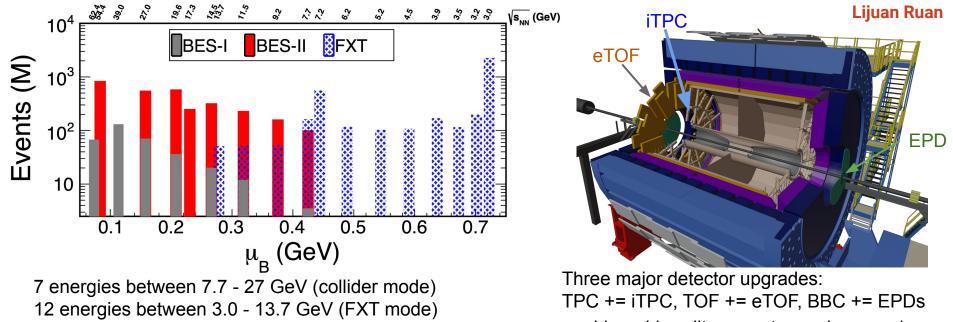
Yevheniia Khyzhniak


11 talks Each talk 30 min ... and in some cases 1 hr...

09:15	BES Overview								
	Speaker: Lijuan Ruan (Brookhaven National Laboratory)								
09:45	Endcap Time-of-Flight Detector in BES								
	Speaker: Yannick Soehngen (University of Heidelberg)								
and the second									
10:15	Coffee break								
10:30	Hypernuclei Production								
	Speaker: Iouri Vassiliev (GSI Helmholtzzentrum fur Schwerionenforschung GmbH)								
-									
11:00	BES Theory Overview								
	Speaker: Dekra Almaalol (University of Illinois at Urbana-Champaign)								
11:30	High Order Memorie and EoS Theory Quanticut								
11.50	High-Order Moments and EoS Theory Overview Speaker: Volodymyr Vovchenko (Lawrence Berkeley National Laboratory)								
I.	Speaker. Yorodynny, Yoronenko (Lawrence berkeey National Labitatory)								
12:00	No Host Lunch Break								
14:00	Dielectron Analysis in BES								
14.00	Speaker: Chenliang Jin (Rice University)								
L									
14:30	Fluctuations in BES Overview								
	Speaker: Yige Huang (CCNU IOPP STAR)								
15:00	Flow in BES Overview								
	Speaker: Emilie Duckworth (Kent State University)								
_									
15:30	Coffee break								
-									
15:45	Polarization/Femtoscopy Overview								
	Speaker: Michael Lisa (Ohio State University)								
16:30	Magnetic Field Effect in v1 Splitting and Non-interdependent Flow in BES								
	Speaker: Aditya Prasad Dash (University of California Los Angeles)								
17.00	ONE Grand and								
17:00	CME Overview								
	Speaker: Yicheng Feng (Purdue University)								

3

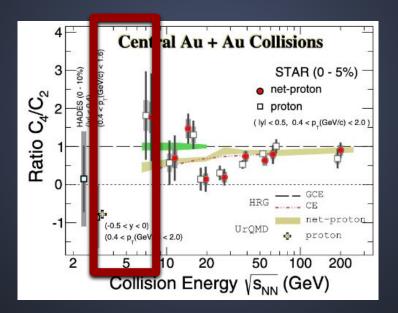
BES addition STAR journal publications



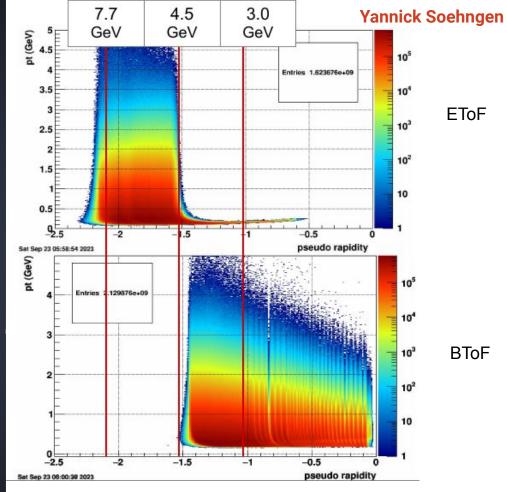
Mike Lisa (Polarization/Femtoscopy)

4

Successful Completion of Beam Energy Scan Program by STAR



 \rightarrow high statistics data cover a broad range of T- μ_B


 \rightarrow wider midrapdity acceptance, improved particle identification, event-plane resolution

STAR conducted detailed measurements with high statistics data using an enhanced detector as part of the RHIC BES program 5

STAR Endcap Time-of-Flight Detector in BES

High statistics data sets with EToF bridging the gap from 3.5 GeV to 7.7 GeV now

Acceptance at 4.5 GeV Red lines : Mid rapidity at 3, 4.5 and 7.7 GeV

6

Yannick Soehngen

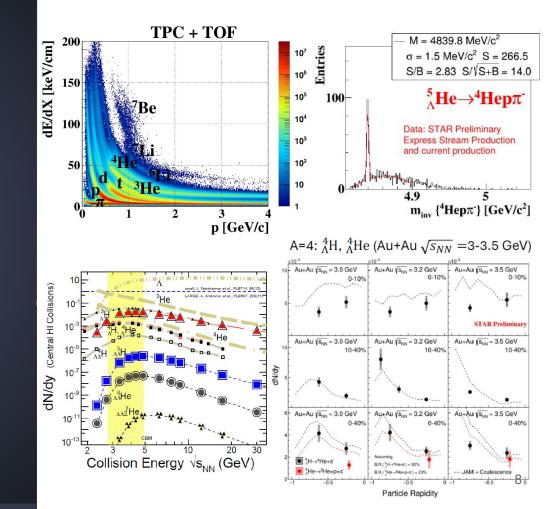
STAR Endcap Time-of-Flight Detector in BES

Energy (GeV) $\sqrt{s_{nn}}$	14.5	19.6	11.5	3.5	7.7	4.5	6.2	5.2	3.9	7.2	9.2	7.7	11.5	13.7	3.0	9.2
Year	20	19			2020									2021		
Mode	C	Collide	er	Fixed Target							Collider		Fixed Target			
Status	flav	ved		produced								cal			wip	
Nr. of Events	320 M	580 M	230 M	100 M	100 M	100 M	100 M	100 M	100 M	320 M	160 M	100 M	50 M	50 M	2 B	50 M
Dmg	xx	xx								х	х	х	х	х	x	х

EToF Calibration Status

Plenty of data featuring EToF available

- All FXT 2020 data sets are calibrated (7 energies from 3.5GeV to 7.7 GeV)
- 3 Collider data sets including the overlap energy at 7.7GeV are calibrated
- Large 3.0 GeV FXT 2021 data set (28 events!) calibration close to final

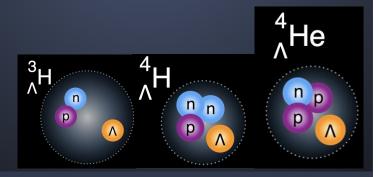

Physics analysis using EToF ongoing

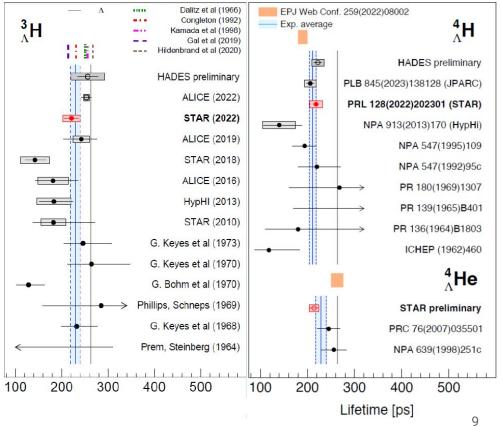
- Proton fluctuation analysis making good progress
- Hypernuclei reconstruction benefiting from inclusion of EToF information
- Investigation of baryon chemical potential prioritized after production

Iouri Vassiliev

Hypernuclei Production

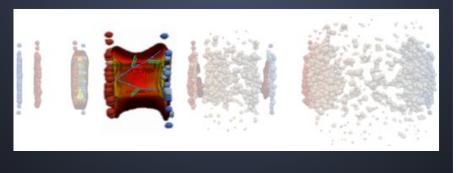
- The dE/dX spectra of π, p, d, t, ³He,
 ⁴He particles at 3.5 GeV (fixed target mode) and heavy fragments up to ⁷Be are clearly seen
- Observation of hyper helium $({}^{5}_{\Lambda}He)$ with significance of 14 σ was shown
- First measurement of dN/dy of hypernuclei in HI collisions -> New challenges for the models
- New data provide first constraints for hypernuclei production models in the high-baryon-density region

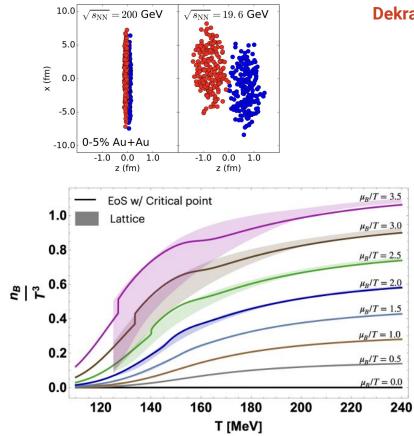

Iouri Vassiliev


Hypernuclei Production

 ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H and ${}^{3}_{\Lambda}$ He lifetimes measured with improved precision

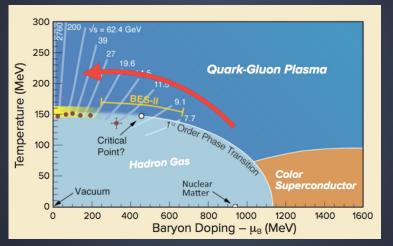
 ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H lifetimes shorter than lifetime of Λ (with 1.8 σ and 3.0 σ)


Consistent with theoretical calculations including pion FSI



BES Theory Overview

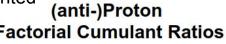
- Goal is to develop a comprehensive modelling of heavy ion collisions for low energy
- Improving poorly understood initial state geometry, fluctuations, conserved charge: baryon stopping (B), strangeness (S) & electric charge (Q)
- Temperature dependence of viscosity
- Improved equation of state
- Improved freeze-out-model

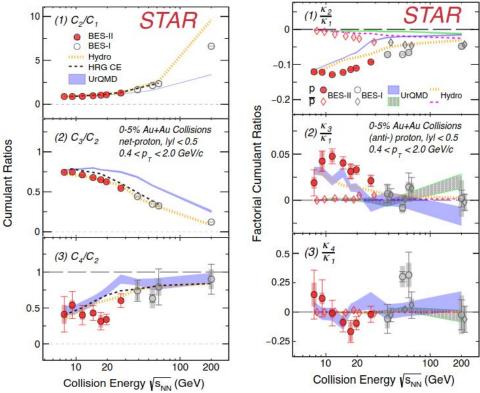


Refined modeling of heavy ion collisions at lower energies, along with new tools and data-model comparisons, is vital for the BES program's interpretative success

Dekra Almaalol

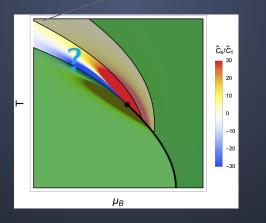
Net-proton higher order moments

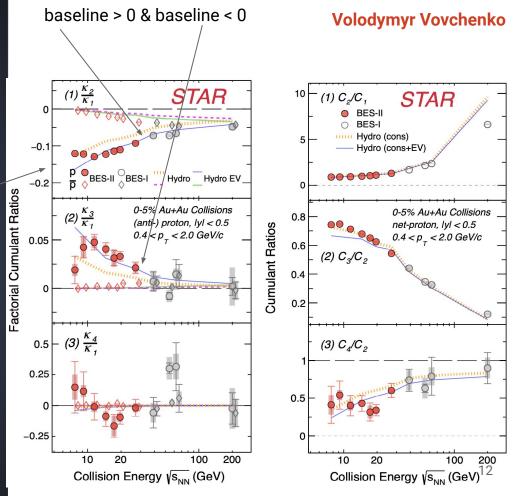

Primary driver of RHIC Beam energy scan in the context of search for critical point


Two main observables:

Cumulant ratios: C₂/C₁, C₃/C₂, C₄/C₂ $C_n \sim \langle \delta N^r \rangle$ Factorial cumulants: κ_2/κ_1 , κ_3/κ_1 , κ_4/κ_1 $\kappa_n \sim \langle N(N-1)(N-2) \rangle$ BES-II results: energy dependence & comparison to baseline is highlighted

Net-proton Cumulant Ratios Factorial Cumulant Ratios


Yige Huang


Implication of the STAR BES-II results in the context 11 of CP search is under discussion in the community

High-Order Moments and EoS Theory Overview

- Factorial cumulants may be more instructive than ordinary cumulants
- Deviations from available non-critical baseline at < 20 GeV

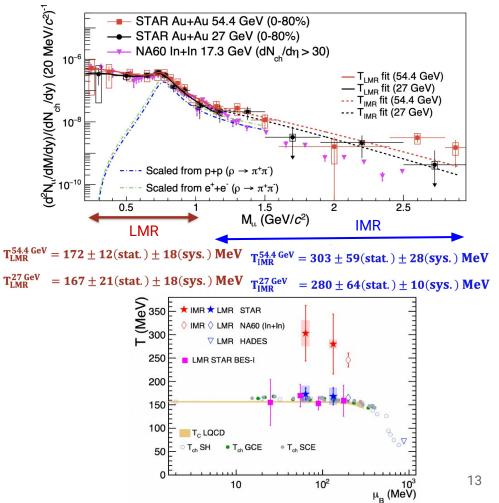
Need precise handle on non-critical contributions

Baseline model comparison to STAR data updated

Chenliang Jin

Dilepton analysis

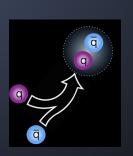
Dilepton act as Spectrometer, Thermometer, Chronometer, with BES-I&II data help map QCD phase diagram

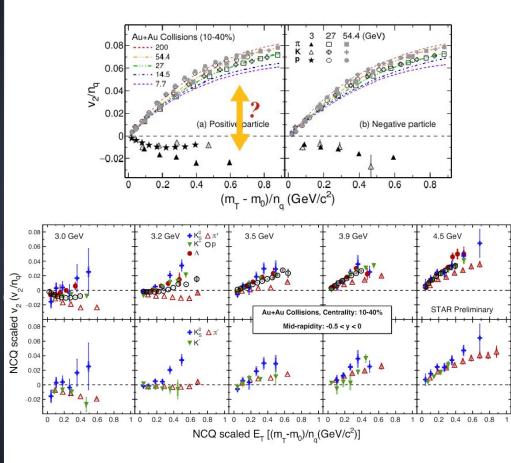

As Thermometer:

Low mass range:

- Results indicate the thermal radiation from hadronic gas is mainly produced around the phase transition
- Close to LQCD prediction

Intermediate mass range:

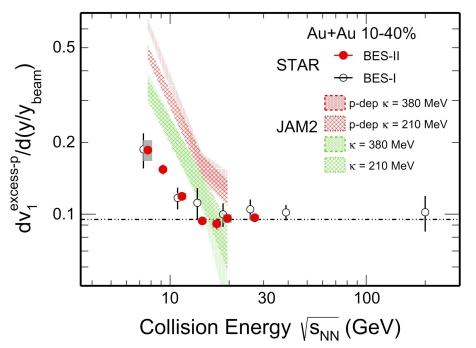

• Thermal dileptons mainly emitted from QGP phase



Emilie Duckworth

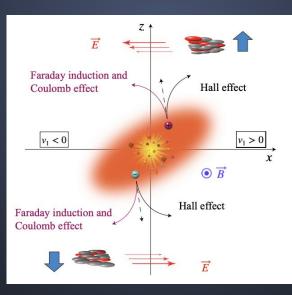
Flow in BES

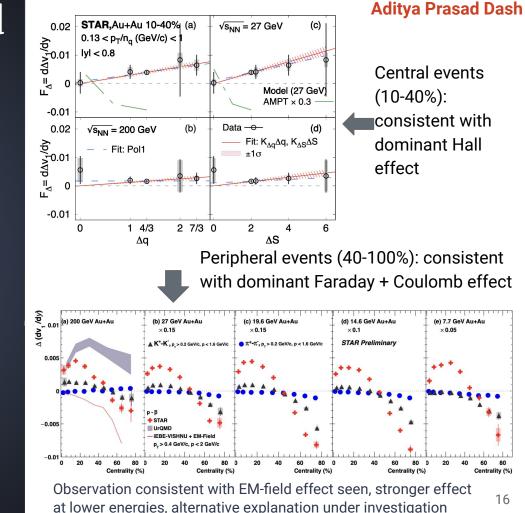
- Partonic collectivity key signature of QGP
- See partonic collectivity in NCQ scaling from BES I
- NCQ scaling becomes gradually better with energy increasing
- Violation seen at the lowest energy showing absence of partonic phase


Emilie Duckworth

Flow in BES

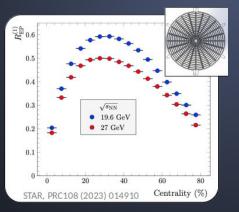
- Rapidity slope of directed flow of excess proton primarily from baryon transport measured
- Trivial effect of beam-rapidity change removed
- Below 14.6 GeV JAM model overpredict the magnitude of the data
- Adding momentum dependence to the potential increases this overprediction

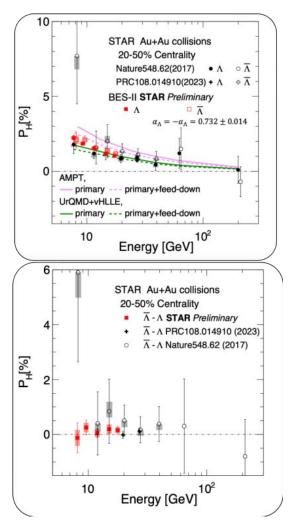

$$N_p v_{1,p} = N_p v_{1,medium} + (N_p - N_{\bar{p}}) v_{1,excess}$$


$$y_{beam}\left(\sqrt{s_{NN}}\right) = \cosh^{-1}\left(\sqrt{s_{NN}}/m_p\right)$$

v₁ splitting & EM-field

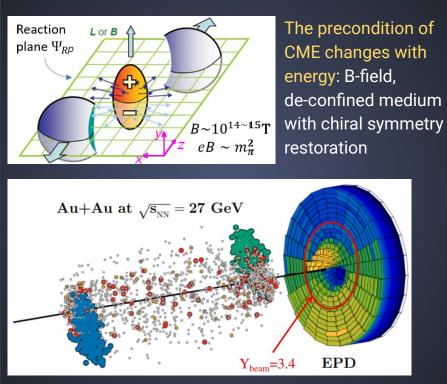
- EM-field in heavy ion collisions is predicted to lead to difference in v₁ for positive and negative particles
- Competition of Hall and Faraday+Coulomb effect determines the sign of v₁ splitting




Polarization

BES-I: hyperon polarization, discovery from BES program Vortical structure of the medium revealed BES-II: Is there difference between Lambda & Lambda-bar due to B-field & magnetic moment ?

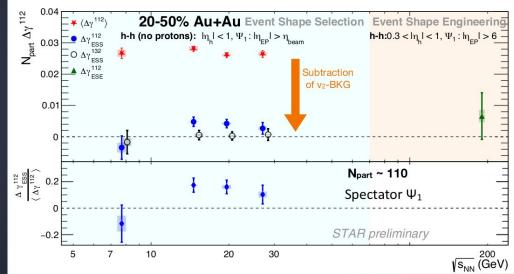
Improved EP resolution (BBC->EPD), higher statistics data with BES-II enables us to study B-field driven splitting of polarization



Michael Lisa

Improved, high-precision Lambda, Xi polarization measured with BES-II data from STAR collaboration

No observable difference between Lambda and anti-Lambda polarization expected due to B-field is observed


Chiral Magnetic Effect

STAR EPD enables forward proton-rich plane that is highly correlated to B-field: perfect for CME search

Yicheng FengMajor challenge: suppression of non-CME backgroundIsobar program provided strong constraint on CME search attop RHIC energy \rightarrow How about low energies?

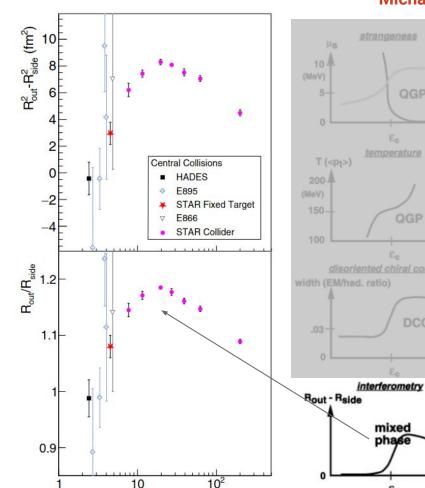
High statistics data from BES-II, new event-shape-selection (ESS) approach provide large background reduction \rightarrow opportunity to revisit CME search with energy

New BES analysis show a upper limit of CME signal with 3-sigma significance with apparent energy dependence: more studies ongoing on ESS method, nonflow, other technique & more data coming from STAR 18

Femtoscopy

Femtoscopy allows one to explore:

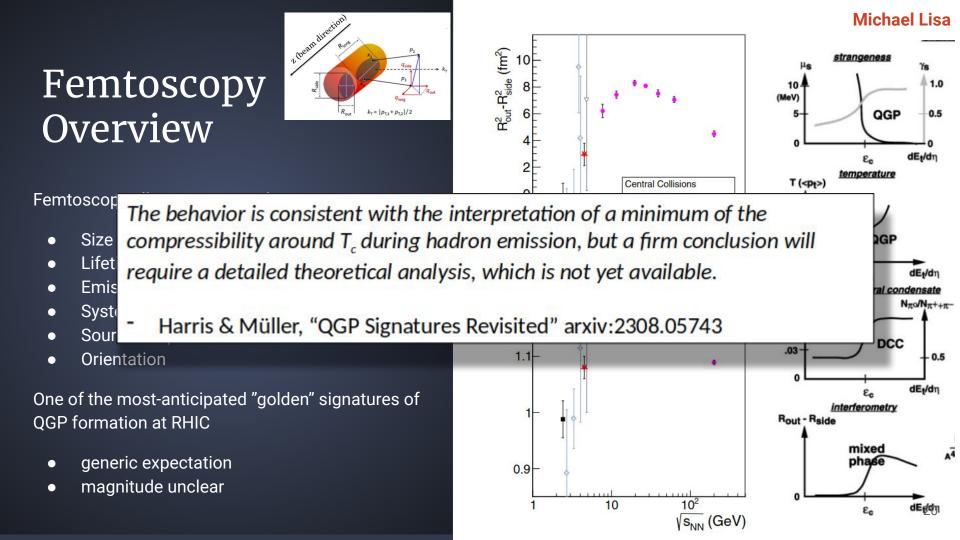
- Size of the emission source
- Lifetime of source
- Emission duration
- System dynamics
- Source shape
- Orientation


One of the most-anticipated "golden" signatures of QGP formation at RHIC

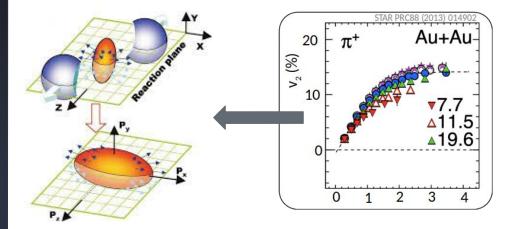
A Deam directic

 $k_{\rm T} = |p_{\rm T,1} + p_{\rm T,2}|/2$

- generic expectation
- magnitude unclear

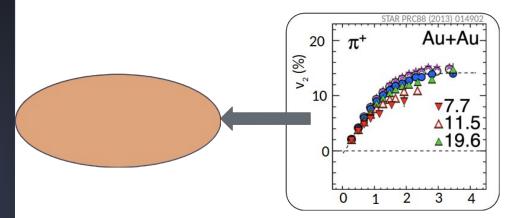

This golden signature is clearly seen ... but barely touched by theory community!

s_{NN} (GeV)

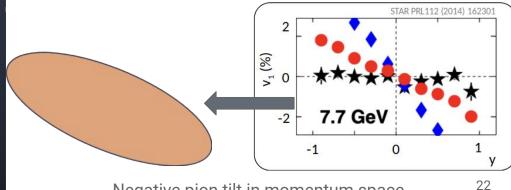

Michael Lisa

dEnfor

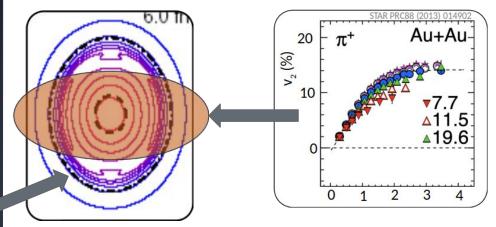
Femtoscopy


Michael Lisa

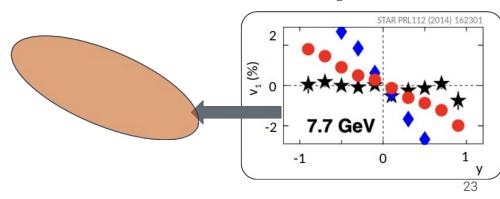
In momentum space emission source extended in-plane


Femtoscopy

Michael Lisa

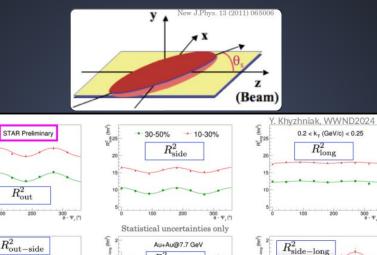

What is the situation in coordinate space?

In momentum space emission source extended in-plane

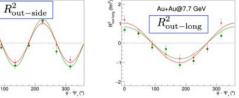


Negative pion tilt in momentum space

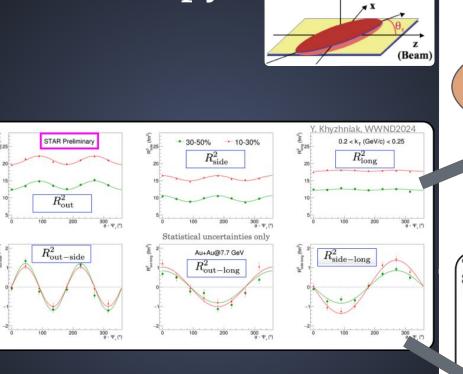
Michael Lisa


Femtoscopy shows out-of-plane extension in the coordinate space => stronger in-plane pressure gradients => leading to positive v_2

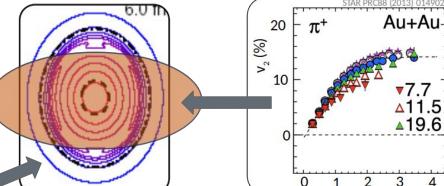
Femtoscopy


2825

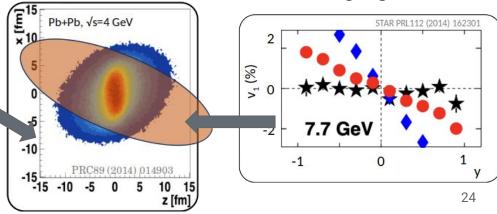
2


300 0 - Ψ, (")

300 ø - Ψ, (°)

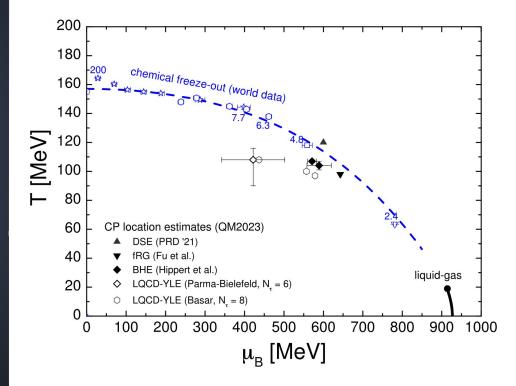


Michael Lisa


Femtoscopy

What does the spatial tilt tell us about the (anti)flow at midrapidity?

Same reasoning for v₁ existence = stronger pressure gradients along shorter axis of the tilted source? Not determined, but studies are ongoing


There is no summary, because it's already summary of summaries......

Thanks for the attention!

Volodymyr Vovchenko

High-Order Moments and EoS Theory Overview

- Recent estimates from theory put the possible CP at -110 MeV, -600 MeV
- Motivates the search with heavy-ion collisions at energies at GeV

Michael Lisa

Polarization

Blast-wave is not hydrodynamics

Full hydrodynamic calculation: vorticity alone predicts a polarization with incorrect sign!

• "longitudinal polarization sign puzzle"

Shear-induced polarization generates (large) polarization, that competes

 different groups have different formulations, with different trends and admixtures

New STAR BES results may yield insight on this fundamental question

