Workshop Summary: Cold QCD, Spin Physics, & UPCs from RHIC to the EIC

June 11, 2024 2024 RHIC-AGS Users Meeting Organizers: Jae Nam (Temple University), SookHyun Lee (UTK), Daniel Brandenburg (OSU)

STAR Foward Systems and Related Topics **Dihadron helicity correlation** STAR 🕁 Office of Brookhaven Science Xilin Liang, for the STAR Collaboration University of California, Riverside Measurement of Λ hyperon polarization 2024 RHIC/AGS ANNUAL USERS' MEETING and spin-spin correlations in p+p Shu-Yi Wei (Shandong University) Brookhaven National Lab June 11, 2024 collisions by the STAR experiment Supported in part by U.S. DEPARTMENT O **UC** RIVERSIDE STAR 🕁 ENERG H.C. Zhang, S.Y. Wei; PLB 839, 137821 (2023) Jan Vanek, for the STAR Collaboration X.W. Li, Z.X. Chen, S. Cao, S.Y. Wei, PRD 109, 014035 (2024) **Brookhaven National Laboratory** Z.X. Chen, H. Dong, S.Y. Wei, arXiv:2404.19202 (2024) AGS/RHIC Annual Users' Meeting **Highlights from PHENIX Spin** 06/11/2024 Devon Loomis on behalf of the PHEN UCLA Entanglement Enabled Intensity Interferometry (E^2I^2) : A New Perspective on Vector Meson Production in UPC Jet substructure and Haowu Duan transverse energy-energy correlator PH^{*}ENIX University of Connecticut Work in preparation, with Daniel Brandenburg, Zhoudunming Tu, Raju Venugopalan, Zhangbu Xu 2024 RHIC/AGS Annual Users' Meeting, June 11-14, 2024 Yiyu Zhou Ultraperipheral collisions: South China Normal University new isights on collectivity University of California, Los Angeles 2024 RHIC/AGS Annual Users' Meeting & baryons ENERGY 11/June/2024 – 14/June/2024 **Prospects with the sPHENIX**

Prithwish Tribedy (Brookhaven National Laboratory)

024 RHIC/AGS ANNUAL USERS' MEETING

Genki Nukazuka (RIKEN/RBRC) 🤶 🕤

2

Cold QCD & Spin Physics at RHIC

- RHIC provides an ideal testing ground for a wide range of topics in spin physics due to its unique capability of colliding polarized hadrons.
- The workshop discussions include:
 - PHENIX overview
 - sPHENIX prospects
 - STAR forward systems
 - Λ -hyperon theory and experiments

(Transverse) Spin Physics at RHIC

- Leading-twist collinear pQCD predicts $A_N \sim 0$
- Origin of A_N : Non-perturbative spin-momentum correlation
 - Fundamental TMD functions
 - Twist-3 correlators

Direct Photon A_N at **PHENIX**

Devon Loomis (UofM)

- Photons in final state \rightarrow No final-state effects
- Clean probe of gluon spin-momentum correlations

• First direct photon A_N from RHIC (PHENIX) \rightarrow 50 times reduced uncertainty from E704 Fermilab

Direct Photon A_N at sPHENIX

- First direct photon A_N from RHIC (PHENIX) \rightarrow 50 times reduced uncertainty from E704 Fermilab
- Significant improvements in statistics expected from sPHENIX

Open Heavy Flavors at PHENIX

- Dominated by gluon-gluon fusion
- Gluon transversity ~ 0
- \rightarrow Probe of trigluon correlations
- \rightarrow Also provides access to gluon Sivers PDF
- PHENIX provides first constraints on phenomenological parameters λ and K_G

Open Heavy Flavors at sPHENIX

- Dominated by gluon-gluon fusion
- Gluon transversity ~ 0
- \rightarrow Probe of trigluon correlations

 \rightarrow Also provides access to gluon Sivers PDF

- PHENIX provides first constraints on phenomenological parameters λ and K_G
- At sPHENIX, open charm A_N can also be measured via prompt D^0 reconstruction.

Helicity at PHENIX

- Gluon helicity accessed via direct photon and charged- πA_{LL}
 - Provide constraints for largely unknown Δg in x < 0.05
- Measurements of A_L with W^{\pm}/Z
 - Leptonic decay channel $W/Z \rightarrow e, \mu$
 - Access to sea quark helicity distribution in the valence region 0.1 < x < 0.4

Λ –Polarization PUZZLE

Λ -hyperons at STAR

0.3

- Forward Meson Spectrometer (FMS) and Roman Pot (RP) detectors provided coverage in the forward ($\eta > 2.5$) regime from 2011 to 2017.
- One of the most intriguing findings is the surprisingly large A_N in the forward region.
- Possible contributions include twist-3 correlators associated with the Sivers, Collins, Diffractive processes.

STAR Highlights: Diffractive-AN

Xilin Liang (UC Riverside)

- A_N measured from Single-Diffractive, Rapidity Gap and Semi-Exclusive events, each consisting differing fraction of diffractive processes.
- The size of A_N from these processes is similar to that of the inclusive process, ruling out diffractive processes as the potential driver of the large A_N .

STAR Forward Upgrade

Completed:

Plans:

- Run-22: $p + p \sqrt{s} = 508 \text{ GeV}$
- Run-23: $Au + Au \sqrt{s} = 200 \text{ GeV}$

• Run-25: $Au + Au \sqrt{s} = 200 \text{ GeV }\&$ possible $p + Au \sqrt{s} = 200 \text{ GeV}$

STAR Forward Upgrade

Coverage: $2.5 < \eta < 4.0$

- Located on STAR west side
- Rapidity coverage is the same as the EIC hadron arm

Requirement:

Detector	pp and pA	AA
ECal	\sim 10 % / \sqrt{E}	~20 % / \
HCal	\sim 50 % / \sqrt{E} + 10%	-
Tracking	Charge separation photon suppression	$\delta p_T/p_T \sim 20 - 30\%$ for 0.2 < p_T < 2 GeV/c

Measures:

- $h^{+/-}$, $e^{+/-}$ (with good e/h separation)
- Photon, π^0 , jets

Combines:

- Forward Tracking System (FTS)
 - Forward Silicon Tracker (FST)
 - small-strip Thin Gap Chambers (sTGC)
- Porward Colorimeter System (FCS)
 - Electromagnetic Calorimeter (ECal)
 - Hadronic Calorimeter (HCal)

Xilin Liang (UC Riverside)

- STAR forward upgrade has been installed and running on time and on budget!
- Current efforts focus on software and detector calibration works of Run 22
- Stay Tuned for new results!

Ultra-Peripheral Collisions

Diffractive Processes

Entanglement Enabled Spin Interference

Investigating Baryon Number Transport (Baryon Junction)

Diffractive J/ψ Production @ 200 GeV

- Measured for coherent and incoherent contributions for different neutron emission in ZDCs
- Systematic unc. in incoherent to coherent cross-section ratio are largely cancelled
- Sensitive to the nuclear structure and deformation
- Important to constrain theoretical models

STAR, arXiv:2311.13637

Diffractive J/ψ Production @ 200 GeV

- Measured for coherent and incoherent contributions for different neutron emission in ZDCs
- Systematic unc. in incoherent to coherent cross-section ratio are largely cancelled
- Sensitive to the nuclear structure and deformation
- Important to constrain theoretical models

Ashik Ikbal (Kent State)

Diffractive J/ψ Production @ 200 GeV

- Measured for **coherent** and **incoherent** contributions for different neutron emission in ZDCs
- Systematic unc. in incoherent to coherent cross-section ratio are largely cancelled
- Sensitive to the nuclear structure and deformation
- Important to constrain theoretical models

Ashik Ikbal (Kent State)

Independent J/ψ production cross-section vs p_T^2

Incoherent preduction preduction
Incoherent preduction

Strong nuclears spip presistion 4(9:49 \$6) = 9 control of the second of t

=> Strong nuclear suppression and subnucleonic fluctuations in Au nucleus

Entanglement Enabled Spin Interference

- STAR observed spin interference in diffractive $\pi^+\pi^-$ production (recently confirmed by ALICE)
- Precise measurement of strong-interaction radius at high-energy

Haowu Duan (UCONN)

Sci.Adv. 9 (2023) 1, eabq3903 arxiv.2204.01625

Entanglement Enabled Spin Interference

- Goal: understood interference effect in a model-independent way
- Quantum mechanical description – intensity interferometry via entanglement

 A_1 A_1 det₁ det₁ $\pi^{+}(p_{1})$ X $\pi^{+}(p_{1})$ $\gamma^*(k)$ \vec{b} \vec{b} $\pi^{-}(p_{2})$ X $\pi^{-}(p_2)$ det₂ det₂ A_2 A_2

WW(Weizsacker-Williams) photon + nuclear target $\rightarrow \rho$ in mid-rapidity

$$\rho(\boldsymbol{q} = \boldsymbol{p}_1 + \boldsymbol{p}_2) \to \pi^+(\boldsymbol{p}_1)\pi^-(\boldsymbol{p}_2) + \pi^+(\boldsymbol{p}_2)\pi^-(\boldsymbol{p}_1)$$

- $\langle \pi^+(\boldsymbol{p}_1)\pi^-(\boldsymbol{p}_2)|\pi^+(\boldsymbol{p}_2)\pi^-(\boldsymbol{p}_1)\rangle = 0$
- Similar to a Bell state: $\frac{1}{\sqrt{2}}(|10\rangle + |01\rangle)$ S. Klein and J. Nystrand Phys. Rev. Lett. 84, 2330 (2000)

Haowu Duan (UCONN)

Entanglement Enabled Spin Interference

Figure: ΔK_{\perp} net momentum transfer from the target/ momentum of the Pomeron. ($\mathbf{k} \equiv \vec{k}_{\perp}$, $|\vec{k}_{\perp}| \equiv k_{\perp}$)

$$M^{\rho}_{A_{1}A_{2}\to\pi^{+}\pi^{-}}(\boldsymbol{p}_{1},\boldsymbol{p}_{2})=M_{A_{1}A_{2}\to\rho}(\boldsymbol{q})\otimes M_{\rho\to\pi^{+}\pi^{-}}(\boldsymbol{q};\boldsymbol{p}_{1},\boldsymbol{p}_{2})$$

The ρ production amplitude can be decomposed into three general factors,

 $M_{A_1A_2 \to \rho}(\boldsymbol{q}) = F_{\text{Photon}}(\boldsymbol{q} - \Delta \boldsymbol{K}) \otimes P_{\text{Pomeron}}(\Delta \boldsymbol{K}) \otimes M_{\gamma \mathbb{P} \to \rho}(\boldsymbol{q} - \boldsymbol{\Delta} \boldsymbol{K}, \Delta \boldsymbol{K}; \boldsymbol{q})$

- Model independent formalism manuscript in preparation, coming soon!
- Observable allows direct access to spin states : Potential for observation of Tensor Pomeron, Odderon etc. depending on channel

EESI Measurement in J/ψ production

Ashik Ikbal (Kent State)

- Interference signal shows strong *pT* dependence and rises toward positive
- Diffractive+interference with additional soft γ radiation predicts
- Negative at low *pT* and rises towards positive value at higher *pT*

Understanding Baryon Transport at High-Energies

u

- 50 Years of iny
- Puzzlingly largenergy)

baryon transport

Prithwish Tribedy (BNL)

Umber observed in central rapidity (high with mesons, are hadrons, particles composed of quarks. Quarks have baryon numbers of $B = \frac{1}{3}$ is have baryon numbers of $B = -\frac{1}{3}$. The term "baryon" usually refers to *triquarks*—baryons made of rs ($B = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$).

Baryon Transport in Ultra-Peripheral Collisions

Baryon Production at mid-rapidity

Prithwish Tribedy (BNL)

- Rapidity slope (α_B) of netprotons ~ constant for all centralities in Au+Au collisions
- Larger slope observed in UPC -Consistent with Regge theory baryon-junction prediction but smaller than PYTHIA/HERWIG

Summary

SPHENIX Collab

Brookhaver

- Productive workshop ~ 35 attendees!
- Exciting opportunities ahead with sPHENIX and STAR forward Upgrade

NOT AN EXIT

Further Opportunities at sPHENIX

Genki's talk

