

Zachary Sweger University of California, Davis

Zachary Sweger

Overview

- QCD Critical Fluctuations
- Rare and spontaneous detector failure
- Toy model with UrQMD
- How not to measure a false signal

Zachary Sweger

Zachary Sweger

Zachary Sweger

Zachary Sweger

6/14/2024

Zachary Sweger

6/14/2024

Non-Gaussian fluctuations in baryon number

- Distribution of net-baryon number is expected to fluctuate near a critical point
- We measure events in which the nuclei collide head-on

https://www.bnl.gov/newsroom/news.php?a=214492

Zachary Sweger

6/14/2024

RHIC/AGS Users Meeting 2024

Non-Gaussian fluctuations in baryon number

- Distribution of net-baryon number is expected to fluctuate near a critical point
- We measure events in which the nuclei collide head-on
- Count the number of protons (N_p) , antiprotons (N_{pbar}) , net-protons (N_p-N_{pbar})

https://www.bnl.gov/newsroom/news.php?a=214492

Non-Gaussian fluctuations in baryon number

- Distribution of net-baryon number is expected to fluctuate near a critical point
- We measure events in which the nuclei collide head-on
- Count the number of protons (N_p) , antiprotons (N_{pbar}) , net-protons (N_p-N_{pbar})
- Measure the mean, variance, skewness, kurtosis...

cumulants

$$C_{1} = \langle N \rangle \equiv \mu \text{ [mean]}$$

$$C_{2} = \langle (N - \mu)^{2} \rangle \equiv \sigma^{2} \text{ [variance]}$$

$$C_{3} = \langle (N - \mu)^{3} \rangle$$

$$C_{4} = \langle (N - \mu)^{4} \rangle - 3 \langle (N - \mu)^{2} \rangle^{2}$$

standardized moments

$$S\sigma = C_3/C_2$$
 [skewness]
 $\kappa\sigma^2 = C_4/C_2$ [excess kurtosis

Net-proton distributions at several energies as measured by STAR. arXiv:2001.02852v2 [nucl-ex] 31 Jul 2020

Proximity to Critical Point → Alternately Enhanced and Suppressed Kurtosis

Predicted fluctuation in kurtosis near critical point

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

Zachary Sweger

6/14/2024

RHIC/AGS Users Meeting 2024

Comparison to Published Beam Energy Scan Results

Published Results

STAR, Phys. Rev. Lett. 128, 202303 (2022); Phys.Rev.C 107.024908 (2023). Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

M. Stephanov. J. Physics G.: Nucl. Part. Phys. 38 (2011) 124147

Remaining Results

• The remaining fixed-target datasets will cover much of the gap

4 **Central Au + Au Collisions** STAR (0 - 5%) 3 -% • net-proton □ proton 2 kurtosis ≥õ (|y| < 0.5, 0.4 < p₊(GeV/c) < 2.0) 0 GCE HRG CE net-proton_ -0.5 < v < 0) UrQMD proton eV/c) < 2.0) 0.4 < p ((2 10 20 50 100 200 5 Collision Energy (GeV)

Published Results

STAR, Phys. Rev. Lett. 128, 202303 (2022); Phys.Rev.C 107.024908 (2023). Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

RHIC/AGS Users Meeting 2024

Remaining Results

- The remaining fixed-target datasets will cover much of the gap
- High-statistics data re-collected below 27 GeV (BES-II)
 - High precision new results shown in Bappaditya Mondal's poster!
 - ➢ Waiting for publication

Published Results

STAR, Phys. Rev. Lett. 128, 202303 (2022); Phys.Rev.C 107.024908 (2023). Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

Zachary Sweger

• We often think of this measurement as the cumulants of a proton-number (n_p) probability distribution

 $P(n_p)$

• We often think of this measurement as the cumulants of a proton-number (n_p) probability distribution

 $P(n_p)$

• Really we're measuring the cumulants of the conditional probability of detecting *n_p given* a detection of multiplicity *M*

 $P(n_p|M)$

• We often think of this measurement as the cumulants of a proton-number (n_p) probability distribution

 $P(n_p)$

 $P(n_p|M)$

• Really we're measuring the cumulants of the conditional probability of detecting n_p given a detection of multiplicity M

Zachary Sweger

- Large kurtosis means large tails
- We use this figure which shows a highly-tailed distribution with a large kurtosis

- Large kurtosis means large tails
- We use this figure which shows a highly-tailed distribution with a large kurtosis
- Long tails *many* decades down cause large kurtosis too!
- The black is a Gaussian. The red is the same Gaussian, but one in 10000 samples is from a Gaussian with twice the width

• This gives an idea of the scale of fluctuations

- This gives an idea of the scale of fluctuations
- We need to understand all low-statistics outliers!

- We often use different detectors to measure proton number and multiplicity
- This makes us vulnerable to the rare and spontaneous failure of either detector

- We often use different detectors to measure proton number and multiplicity
- This makes us vulnerable to the rare and spontaneous failure of either detector
- Consider a vertical slice in our correlation plot

- We often use different detectors to measure proton number and multiplicity
- This makes us vulnerable to the rare and spontaneous failure of either detector
- Consider a vertical slice in our correlation plot
 If the proton detector ever fails

- We often use different detectors to measure proton number and multiplicity
- This makes us vulnerable to the rare and spontaneous failure of either detector
- Consider a vertical slice in our correlation plot
 If the proton detector ever fails, we get a sudden vertical shift adding to low tails

- We often use different detectors to measure proton number and multiplicity
- This makes us vulnerable to the rare and spontaneous failure of either detector
- Consider a vertical slice in our correlation plot
 If the proton detector ever fails, we get a sudden vertical shift adding to low tails
 If the multiplicity detection ever fails

- We often use different detectors to measure proton number and multiplicity
- This makes us vulnerable to the rare and spontaneous failure of either detector
- Consider a vertical slice in our correlation plot
 If the proton detector ever fails, we get a sudden vertical shift adding to low tails
 If the multiplicity detection ever fails, sudden horizontal shift adds to high tails

- There are many potential sources of detector failure
- Proton detector:

- There are many potential sources of detector failure
- Proton detector:
 - □ Fluctuating acceptance

- There are many potential sources of detector failure
- Proton detector:
 - □ Fluctuating acceptance
 - □ Algorithmic failure

- There are many potential sources of detector failure
- Proton detector:
 - □ Fluctuating acceptance
 - □ Algorithmic failure
 - □ Sensitivity to pileup

- There are many potential sources of detector failure
- Proton detector:
 - □ Fluctuating acceptance
 - □ Algorithmic failure
 - □ Sensitivity to pileup
- Multiplicity detector:

- There are many potential sources of detector failure
- Proton detector:
 - □ Fluctuating acceptance
 - □ Algorithmic failure
 - □ Sensitivity to pileup
- Multiplicity detector:
 □ Fluctuating acceptance

UrQMD Au+Au $\sqrt{s_{NN}} = 3.9 \text{ GeV}$ proton number 10⁵ **10**⁴ 10³ 20 10² 10 50 150 200 ัก 00 multiplicity

- There are many potential sources of detector failure
- Proton detector:
 - □ Fluctuating acceptance
 - □ Algorithmic failure
 - □ Sensitivity to pileup
- Multiplicity detector:
 ☐ Fluctuating acceptance
 ☐ Algorithmic failure

- There are many potential sources of detector failure
- Proton detector:
 - Fluctuating acceptanceAlgorithmic failure
 - □ Sensitivity to pileup
- Multiplicity detector:
 □ Fluctuating acceptance
 □ Algorithmic failure
 □ Sensitivity to pileup

Toy Model at $\sqrt{s_{NN}} = 3.9 \text{ GeV}$

The Toy Model

- UrQMD in cascade mode
- $\sqrt{s_{NN}} = 3.9 \text{ GeV}$
- Analysis window: $0.4 \le p_T \le 2 \text{ GeV/c}, -0.5 \le y-y_{CM} \le 0$
- Out-of-time pileup: double collisions at 0.01% rate

Toy Model at $\sqrt{s_{NN}} = 3.9 \text{ GeV}$

The Toy Model

- UrQMD in cascade mode
- $\sqrt{s_{NN}} = 3.9 \text{ GeV}$
- Analysis window: $0.4 < p_T < 2 \text{ GeV/c}, -0.5 < y-y_{CM} < 0$
- Out-of-time pileup: double collisions at 0.01% rate
- TPC toy model:
 - > 100% efficiency for single collisions
 - \geq 100% pileup efficiency (slow detector)
- TOF toy model:
 - > 100% efficiency for single collisions
 - > 0% pileup efficiency (fast detector)

• When identical detectors are used tails are suppressed

- When identical detectors are used tails are suppressed
- Pileup only causes large signal when we mix detectors

- Like at 3 GeV, we often don't use one detector to identify protons
- At some momentum, we switch from using the TPC to additionally requiring TOF

STAR, Phys. Rev. Lett. 128, 202303 (2022); Phys.Rev.C 107.024908 (2023).

RHIC/AGS Users Meeting 2024

- Like at 3 GeV, we often don't use one detector to identify protons
- At some momentum, we switch from using the TPC to additionally requiring TOF
- In toy model, we can similarly set a momentum above which we require TOF
- We can test effect of various momentum cutoffs

- Like at 3 GeV, we often don't use one detector to identify protons
- At some momentum, we switch from using the TPC to additionally requiring TOF
- In toy model, we can similarly set a momentum above which we require TOF
- We can test effect of various momentum cutoffs
- Strategy:
 - toy TPC measures multiplicity
 toy TPC measures protons beneath momentum cutoff. Above cutoff, use toy TOF (no pileup)

Cumulant Instability in the Toy Model

Zachary Sweger

• Again, the correlation between the multiplicity and proton number is the entire measurement

UrQMD Au+Au $\sqrt{s_{NN}} = 3.9 \text{ GeV}$

- Again, the correlation between the multiplicity and proton number is the entire measurement
- To make a false signal

UrQMD Au+Au $\sqrt{s_{NN}} = 3.9 \text{ GeV}$

- Again, the correlation between the multiplicity and proton number is the entire measurement
- To make a false signal
 - 1. Measure multiplicity and proton number with two different detectors/methods

- Again, the correlation between the multiplicity and proton number is the entire measurement
- To make a false signal
 - 1. Measure multiplicity and proton number with two different detectors/methods
 - 2. Ensure that a small fraction of the time, the methods become uncorrelated

150

50

100

0

200

multiplicity

Zachary Sweger

• To make a robust signal

UrQMD Au+Au $\sqrt{s_{NN}} = 3.9 \text{ GeV}$

- To make a robust signal
 - 1. Maximize the similarities between multiplicity and proton-number measurements

- To make a robust signal
 - 1. Maximize the similarities between multiplicity and proton-number measurements
- If both measurements fail, they fail in the same way

- To make a robust signal
 - 1. Maximize the similarities between multiplicity and proton-number measurements
- If both measurements fail, they fail in the same way
- Nearly all non-physics fluctuations are suppressed!

Zachary Sweger

6/14/2024

RHIC/AGS Users Meeting 2024

• The largest background of high-order cumulants is rare and spontaneous decorrelations between measurements of multiplicity and proton number

- The largest background of high-order cumulants is rare and spontaneous decorrelations between measurements of multiplicity and proton number
- These rare and spontaneous decorrelations can be caused by

- The largest background of high-order cumulants is rare and spontaneous decorrelations between measurements of multiplicity and proton number
- These rare and spontaneous decorrelations can be caused by
 - ✓ algorithmic failure

- The largest background of high-order cumulants is rare and spontaneous decorrelations between measurements of multiplicity and proton number
- These rare and spontaneous decorrelations can be caused by
 - ✓ algorithmic failure
 - ✓ fluctuations in acceptance

- The largest background of high-order cumulants is rare and spontaneous decorrelations between measurements of multiplicity and proton number
- These rare and spontaneous decorrelations can be caused by
 - ✓ algorithmic failure
 - \checkmark fluctuations in acceptance
 - ✓ pileup

- The largest background of high-order cumulants is rare and spontaneous decorrelations between measurements of multiplicity and proton number
- These rare and spontaneous decorrelations can be caused by
 - ✓ algorithmic failure
 - ✓ fluctuations in acceptance
 - ✓ pileup
- These can be suppressed by maximizing similarities between proton number and multiplicity measurements

