PROBING THE QCD PHASE DIAGRAM VIA NET-PROTON NUMBER FLUCTUATIONS AT RHIC

Ashish Pandav (Lawrence Berkeley National Lab)

PhD Advisor: Prof. Bedanga Mohanty PhD Institute: NISER, India

RHIC/AGS Annual User's Meeting

Outline 1. Introduction 2. Experimental results 3. Summary and outlook

INTRODUCTION: QCD PHASE DIAGRAM

Phase diagram of strongly interacting matter] Largely conjectured

OBSERVABLES:

•Cumulants: n = net-proton multiplicity in an event $C_1 = \langle n \rangle$ $C_2 = \langle \delta n^2 \rangle$ $*\delta n = n - \langle n \rangle$ $C_3 = <\delta n^3 >$ $C_4 = <\delta n^4 > -3 <\delta n^2 >$ $C_5 = \langle \delta n^5 \rangle - 10 \langle \delta n^3 \rangle \langle \delta n^2 \rangle$ $C_6 = \langle \delta n^6 \rangle - 15 \langle \delta n^4 \rangle \langle \delta n^2 \rangle - 10 \langle \delta n^2 \rangle$ • Factorial cumulants:

$$\begin{aligned} \kappa_1 &= C_1 \\ \kappa_2 &= -C_1 + C_2 \\ \kappa_3 &= 2C_1 - 3C_2 + C_3 \\ \kappa_4 &= -6C_1 + 11C_2 - 6C_3 + C_4 \\ \kappa_5 &= 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5 \\ \kappa_6 &= -120C_1 + 274C_2 - 225C_3 + 85C_4 - 15C_5 \\ + C_6 \end{aligned}$$

Kurtosis: Peakedness

$$<\delta n^3 >^2 + 30 < \delta n^2 >^3$$

M. A. Stephanov, PRL 107 (2011) 052301

R.V. Gavai and S. Gupta, *PLB696*, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06) A. Bazavov et al., PRL109, 192302(12) S. Borsanyi et al., PRL111, 062005(13)

Related to correlation length: $C_2 \sim \xi^2$, $C_4 \sim \xi^7$ Finite size/time effects reduces ξ Higher order \rightarrow more sensitivity C_{4q} **Related to susceptibilities: -** $\mathbf{C}_{2q} \quad \mathbf{X}_2 \quad \mathbf{C}_{2q}$ Comparison with lattice QCD, HRG, QCD-based model calculations

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter Check if produced system is governed by thermodynamics \Box Experimentally establish crossover at small μ_R \Box Search for signatures of 1st order P.T. at large μ_R Search for signatures of QCD critical point

BEAM ENERGY SCAN AND STUDY OF PHASE DIAGRAM

 \Box Varying collision energy, impact parameter varies T and μ_B of system created Study energy/centrality dependence of cumulants

Phase I of BES program (BES-I): Au+Au collisions

√s _{NN}	Events	ч
(GeV)	(106)	(M
200	220	2
62.4	43	7
54.4	550	8
39	92	1
27	31	15
19.6	14	20
14.5	14	20
11.5	7	3
7.7	2.2	42

3	140	72

BEAM ENERGY SCAN AND STUDY OF PHASE DIAGRAM

 \Box Varying collision energy, impact parameter varies T and μ_B of system created Study energy/centrality dependence of cumulants

Phase I of BES program (BES-I): Au+Au collisions

√s _{NN}	Events	μ
(GeV)	(10 ⁶)	(M
200	220	2
62.4	43	7
54.4	550	8
39	92	1
27	31	15
19.6	14	20
14.5	14	20
11.5	7	3
7.7	2.2	42

by Sam Heppelman and Yu Zhang (CCNU)

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter

Check if produced system is governed by thermodynamics

 \Box Experimentally establish crossover at small μ_R

 \Box Search for signatures of 1st order P.T. at large μ_R

RESULTS: STUDY OF THERMODYNAMICS

Study of thermodynamics: Net-baryon $C_3/C_1 > C_4/C_2 > C_5/C_1 > C_6/C_2$ - Lattice

LQCD: HotQCD, PRD101,074502 (2020) FRG: Wei-jie Fu et. al, PRD 104, 094047 (2021) STAR: PRL 130, 082301 (2023) : PRL 127, 262301 (2021)

STAR: PRL 126, 092301 (2021) : PRC 104, 024902 (2021)

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter

Check if produced system is governed by thermodynamics

Experimentally establish crossover at small μ_{R}

 \Box Search for signatures of 1st order P.T. at large μ_R

STAR: PRL 127, 262301 (2021) STAR: PRL 130, 082301 (2023)

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) LQCD: HotQCD, PRD 101, 074502 (2020) FRG: Wei-jie Fu et. al, PRD 104, 094047 (2021)

- Increasingly negative C_6/C_2 (down to 7.7 GeV) with decreasing $\sqrt{s_{NN}}$ (1.7 σ significance) - a trend consistent with lattice QCD
- $C_6/C_2 > 0$ at 3 GeV, sign reproduced by UrQMD.

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter

Check if produced system is governed by thermodynamics

 \Box Experimentally establish crossover at small μ_R

 \Box Search for signatures of 1st order P.T. at large μ_R

RESULTS: STUDYING THE FIRST-ORDER PHASE TRANSITION

Two-component distribution: Large factorial cumulants with alternating sign

 \Box For $\sqrt{s_{NN}} \ge 11.5$ GeV, the proton κ_n within uncertainties does not support the two-component shape of proton distributions expected near a 1st order P.T.

Precision measurement needed.

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter

Check if produced system is governed by thermodynamics

 \Box Experimentally establish crossover at small μ_R

 \Box Search for signatures of 1st order P.T. at large μ_R

RESULTS: SEARCH FOR THE CRITICAL POINT

Collision Energy $\sqrt{s_{NN}}$ (GeV)

HADES: PRC 102, 024914 (2020) STAR: PRL 127, 262301 (2021) STAR: PRL 128, 202302 (2022) HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021)

M. A. Stephanov, PRL 107 (2011) 052301

Non-monotonic collision energy dependence observed for net-proton C₄/C₂ at ~3σ level
– consistent with CP expectation.
Non-CP models fail to reproduce the trend.

□ Suppression observed at $\sqrt{s_{NN}} = 3 \text{GeV} (\mu_B = 750 \text{ MeV})$, consistent with hadronic baseline □ Precision measurement from BES-II ongoing

FINDINGS:

Perform collisions of nuclei to produce and study QCD matter Check if produced system is governed by thermodynamics Data ($\sqrt{s_{NN}} \ge 7.7$ GeV or $\mu_B < 420$ MeV) within uncertainties favors ordering expected from Experimentally establish crossover at small μ_B Observed sign and trend in data ($\sqrt{s_{NN}} \ge 7.7$ GeV) consistent with calculations from lattice QCD ($\mu_B < 110$ MeV) with a crossover at $O(\sim 1\sigma)$ significance level. \Box Search for signs of 1st order P.T. at large μ_B near 1st order phase transition. Search for signs of QCD critical point within $\leq 3\sigma$ level, consistent with model expectation with a CP. Taken collectively: $MeV\left(\sqrt{s_{NN}} = 3 \ GeV\right)$

- CP (if it exists) could be within $\sqrt{s_{NN}} = 3 - 27 Ge$

- lattice thermodynamics. 3 GeV data violates. QCD matter out of equilibrium at 3 GeV?

- Data ($\sqrt{s_{NN}} > 7.7$ GeV) within uncertainties suggest absence of any bimodal structure expected

Hint of on-monotonic energy dependence observed in data around ($\sqrt{s_{NN}} = 7.7 - 27$ GeV)

- QCD phase structure starkly different between low $\mu_B \sim 20$ MeV ($\sqrt{s_{NN}} = 200$ GeV) and high $\mu_B \sim 720$

ANALYSIS OUTLOOK: PRECISION DATA FROM BES-II

Interesting trends seen in BES-I data. Need for precision measurements for confirmation. a new fixed target program. Precision measurement from BES-II ongoing!

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

BES-II at RHIC: ~10-20 fold increase in statistics and several important detector upgrades and

BES-II data: $\sqrt{s_{NN}} = 7.7 - 27$ GeV (collider runs) have been released

ACKNOWLEDGEMENTS:

Sincere regards to my collaborators during PhD: Bedanga Mohanty**, Nu Xu, Xin Dong, Xiaofeng Luo, ShinIchi Esumi, Toshihiro Nonaka, Debasish Mallick*, Yu Zhang*, Dylan Neff*, Risa Nishitani, Ho-San Ko

STAR Collaboration, EHEP group at NISER, RNC group at LBNL

Thank you all.

**PhD avisor *postdocs