

Proton Fluctuations in Azimuthal Partitions of Heavy Ion Collisions at STAR

 $\bullet \bullet \bullet$

Dylan Neff CEA Paris-Saclay

6/13/2024

RHIC/AGS Users' Meeting 2024

QCD Phase Diagram

Goal: Map out phase diagram via heavy ion collisions

QCD Phase Diagram

QCD Phase Diagram

2 / 10

Analysis Goal

 Look for azimuthal correlations among protons indicative of clustering → possible sign of a first order phase transition

Analysis Goal

- Look for azimuthal correlations among protons indicative of clustering → possible sign of a first order phase transition
- X. Luo https://indico.ihep.ac.cn/event/12478/
- Compare proton multiplicities in azimuthal partitions to uncorrelated expectation

Azimuthal Partitioning

Partition the azimuth in each event and histogram particle tracks

Azimuthal Partitioning

Dylan Neff

Azimuthal Partitioning

Binomial Distributions

Number of Successes

0.0

6/13/2024

Dylan Neff

8

6

10

Number of Protons in Partition

12

14

16

18

20

Dylan Neff

Distribution Width Interpretation

❑ Variance proxy for degree of clustering
 ❑ Total tracks per event fixed → clusters and voids are a packaged deal

Large variance \rightarrow excess clustering

Distribution Width Interpretation

Large variance \rightarrow excess clustering

❑ Variance proxy for degree of clustering
 ❑ Total tracks per event fixed → clusters and voids are a packaged deal

Small variance \rightarrow lack of clustering

6/13/2024

Dylan Neff

Single and Mixed Event variances very similar to binomial, though slight deviations apparent

Single and Mixed Event variances very similar to binomial, though slight deviations apparent

Single and Mixed Event variances very similar to binomial, though slight deviations apparent

Define observable as normalized deviation from binomial

Single and Mixed Event variances very similar to binomial, though slight deviations apparent

Mixed Event $\langle \Delta \sigma^2 \rangle \approx 0 \rightarrow$ very similar to binomial, Single Event is significantly smaller variance

$\langle \Delta \sigma^2 \rangle$ vs Event Multiplicity

Magnitude of repulsive interaction increases with decreasing multiplicity per event

$\langle \Delta \sigma^2 \rangle$ vs Event Multiplicity

Magnitude of repulsive interaction increases with decreasing multiplicity per event

Multiplicity dependence likely dominated by global momentum conservation

Subtract 62 GeV Baseline

0.0010

0.0005

0.0000

-0.0005

-0.0010

0

 $\langle \Delta \sigma^2 \rangle_{62}$ GeVFit

 $\langle \Delta \sigma^2 \rangle$

Subtract 62 GeV Baseline

0.0010

0.0005

0.0000

-0.0005

-0.0010

0

 $\langle \Delta \sigma^2 \rangle_{62}$ GeVFit

 $\langle \Delta \sigma^2 \rangle$

- Phase diagram of QCD probed with the Beam Energy Scan at RHIC
 Look for clustering of protons as signal for first-order transition
- Strong proton repulsion observed
 - Likely momentum conservation background
 - Need to correct this background to measure possible superimposed clustering signal

- Phase diagram of QCD probed with the Beam Energy Scan at RHIC
 Look for clustering of protons as signal for first-order transition
- Strong proton repulsion observed
 - Likely momentum conservation background
 - Need to correct this background to measure possible superimposed clustering signal

Backup

RHIC Beam Energy Scan (BES)

 $f_{\sqrt{s_{NN}}} \leftrightarrow \mu_B$,

Collision energy is directly related to baryon density at mid rapidity

- Initial state nuclei made of baryons igodol
- More baryons transported to \bullet mid-rapidity at lower beam energies
- Pair production at higher energy \bullet dilutes baryon density

			_	
√s _{NN} (GeV)	μ _B (MeV)	Т _{СН} (MeV)		180 200 62.439 27 19.6 11.5 7.7 GeV Au+Au Collisions
200	25	166		
62.4	73	165		
54.4	83	165	$\widehat{>}$	
39	112	164	Me	
27	156	162	ch (
19.6	206	160		
14.5	264	156		130 - 30-40% — Cleymans et al. - Andronic et al.
11.5	315	152		Grand Canonical Ensemble (Yield Fit)
9.2	355	140		
7.7	420	140		$\mu_{\rm B}^{200}$ (MeV)

Vary beam energy to scan OCD phase space

RHIC Beam Energy Scan (BES)

Phase Transitions of QCD

Order parameters for QCD are conserved charge densities

Phase Transitions of QCD

Order parameters for QCD are conserved charge densities

Local density fluctuations expected in 1^{st} order transition, larger as critical point is approached \rightarrow clustering

6/13/2024

V. Koch Quark Matter 2019

STAR Tracking and PID

Particle identification via two detectors

- Time Projection Chamber (**TPC**)
- Time of Flight (**TOF**)

Fluctuations of Conserved Quantities

Multiplicity (N) distribution of conserved charge changes along phase transition line

Calculate kurtosis \rightarrow measure of peakedness

Kurtosis of net-proton multiplicity distribution expected to be non-monotonic as a function of energy if critical point exists

Mixed Events

Each event is sorted into a class based on energy, centrality and vertex z position

Select one particle track per event from a pool of (~150) raw events to generate mixed events

Goal:

Wash out correlated event-by-event effects (signal) while capturing detector effects (background)

Event Resampling

- Take multiple random partitions (72) from each event
- Agrees with analytical expectations for random tracks
- Entries no longer independent \rightarrow Block Bootstrap

Resampling improves resolution by utilizing more information in each event

Dylan Neff

Stochastic Partitions

- With evenly spaced partitions, the distribution tends to oscillate at high number of samples
- With stochastic partitions, the distribution doesn't converge quite as nicely
 - This is also partially due to the way the plot on the right is generated. Entirely new random partitions each time

Evenly Spaced Partitions

Stochastically Spaced Partitions

Optimal Samples

Stats Deviations vs Number of Samples 15 tracks, 60° width, 4000 events, 4 algorithm

- Need to optimize the number of samples per event
 - \circ More samples \rightarrow more accurate moments
 - \circ More samples \rightarrow slower analysis
- Decided on 72 samples per event
 5° spacing on average

Repulsion Observed

Positive $\Delta \sigma^2 \rightarrow$ Clustering Negative $\Delta \sigma^2 \rightarrow$ Repulsion

Repulsion Observed

Positive $\Delta \sigma^2 \rightarrow$ ClusteringNegative $\Delta \sigma^2 \rightarrow$ Repulsion

 Significant repulsion observed in STAR data

Repulsion Observed

AMPT	
MUSIC+FIST	
MUSIC+FIST	EV

Lin, HePhys. Rev. C 96, 014910(2017)Vovchenko et alPhys. Rev. C 105, 014904(2022)Vovchenko et alPhys. Rev. C 106, 064906(2022)

Repulsion at All Energies

Repulsion at All Energies

Correlation Strength vs Energy

Negative
$$\Delta \sigma^2 \rightarrow Repulsion$$

Repulsion observed between proton tracks in STAR data and all models

STAR correlations from most central 0-5%
centrality showed no significantly beam
energy dependence and larger strength in
correlation than AMPT. In addition, AMPT
showed a moderate beam energy
dependence.

Use 62 GeV as Baseline

STAR data seem to converge at high energy

Use 62 GeV as Baseline

Dylan Neff

Subtract 62 GeV Baseline

Subtract the 62.4 GeV fits to highlight the STAR energy dependence

45 / 10

Models

Dylan Neff

Parameters not directly comparable between attractive and repulsive

Simulating Correlated Tracks

- Built simple model of correlation to test analysis
- *n* tracks in event placed one at a time
 - First track has flat probability distribution in ϕ
 - Each track placed produces Gaussian distortion in P(φ)
 for all subsequent tracks
- Can model attraction (A>0) and repulsion (A<0)

Toy Model Visualization

- Model visualized here for a single event with large correlation *A* to demonstrate an exaggerated effect
- Tracks in the Repulsive model tend to spread out while those in the Attractive model cluster together
 Always finite probability for any \$\overline\$ due to baseline of +1 in Gaussian kernel

Simulations vs Total Protons

- Plot $\Delta \sigma^2$ vs the total number of protons in each event for a handful of simulation *Amplitudes*
- Observe consistently flat trends with average value correlated with *A*

Mixed distributions for toy model are statistically identical to binomial

Can Reliably Extract Correlation

- Plotting $\Delta \sigma^2$ vs the total number of protons, get good linear relationship with input simulation *Amplitude*
- This suggests the analysis can reliably extract the input correlation in the case of this simple model
- Changing Gaussian correlation width leads to different but still linear relationship

Slope vs Partition Width Simulation

- Dependence appears quadratic
- Different σ different x-intercept

6/13/2024

Baseline vs Event Multiplicity

Same message as 120° case, better statistics

Curvature vs Event Multiplicity

Clear difference in correlation range between STAR data and AMPT model

Gaussian Correlation Model: 72 Samples per Event Repulsive A=0.01 σ =1.2

Repulsive $\Delta = 0.01 \sigma = 0.4$

Repulsive A=0.006 σ =0.4 Repulsive A=0.006 σ =1.2

0.0002

0.0001 0.0000 -0.0001 -0.0002

-0.0003

Data Set - Au+Au Beam Energy Scan I

√s _{NN} (GeV)	Triggers	Minimum Bias Events (million)	0-5% Central Events (million)	AMPT 0-5% Central Events (million)
7.7	290001, 290004	3.1	0.17	1.61
11.5	310004, 310014	7.4	0.42	1.46
19.6	340001, 340011, 340021	17	0.91	1.42
27	360001	32	1.8	1.60
39	280001	88	5.7	1.56
62.4	270001, 270011, 270021	47	3.0	1.52

Corrections Implemented:

- Pile-up Rejection
- Dca-xy Bad Events Cut
- Bad Runs Removed

Corrections Not Implemented:

- Efficiency Correction
- Centrality Bin Width Correction

Proton Selection

Systematic Cuts

Centrality Definition: refmult3

Charged particles within $|\eta| < 1$ excluding protons