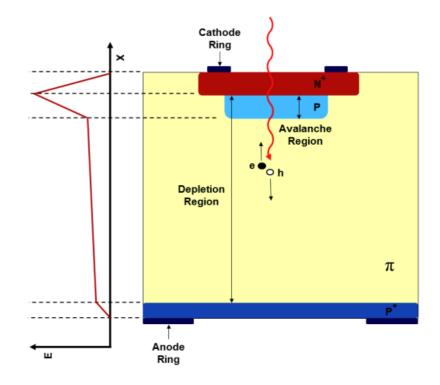
AC-LGAD sensor irradiation test

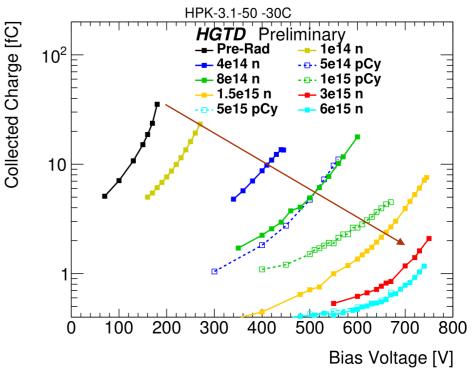
Dr. Simone M. Mazza (SCIPP, UC Santa Cruz)

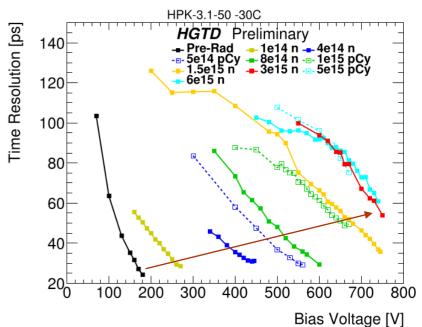


LGADs and radiation damage

Low Gain Avalanche Detectors

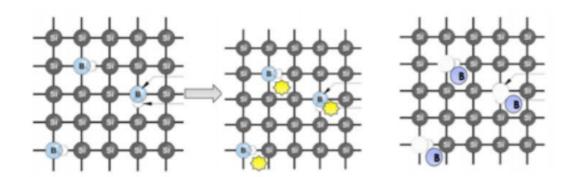
- LGAD: silicon detector with a thin ($<5~\mu m$) and highly doped ($\sim10^{16}~P++$) multiplication layer
 - High electric field in the multiplication layer
 - Field is high enough for electron multiplication but not hole multiplication
- LGADs have intrinsic modest internal gain (10-50)
 - Gain = $\frac{Q_{LGAD}}{Q_{PiN}}$ (collected charge of LGAD vs same size PiN)
 - Not in avalanche mode \rightarrow controlled tunable gain with applied bias voltage
- Great single hit time resolution (down to 20ps)
- The granularity of LGADs is limited to the mm scale
 - Solution: high granularity LGAD prototypes
- Several producers of experimental LGADs
 - HPK (Japan), BNL (USA), FBK (Italy), CNM (Spain), NDL/IMEI (China), Micron (UK)
 - AC-LGAD produced at HPK and BNL in this study funded by US-Japan grant


Nucl. Instrum. Meth. A765 (2014) 12 – 16. Nucl. Instrum. Meth. A831 (2016) 18–23.


LGAD and radiation damage

- LGADs while operating in high energy physics experiments will sustain radiation damage
 - Both in terms of fluence and ionization dose
- Change in performance caused by reduced doping concentration in the gain layer by **acceptor removal mechanism**
 - Some details: https://doi.org/10.1016/j.nima.2018.11.121

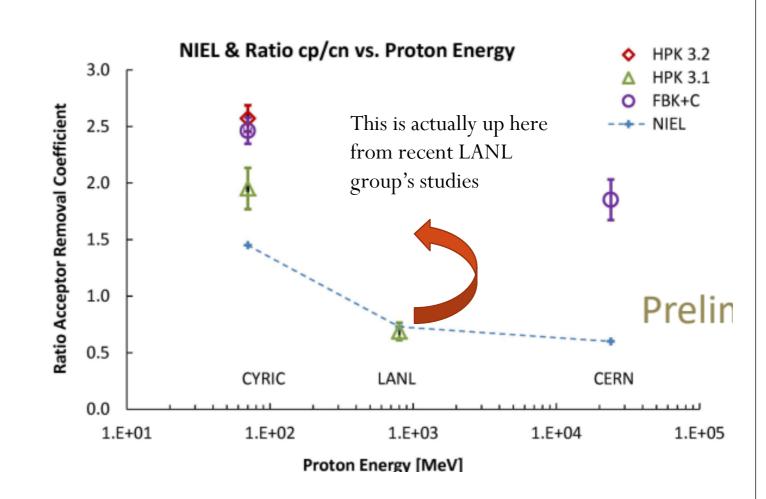
Performance effects of radiation damage (E.g. on 50um sensor)


- Partly the performance can be recovered by increasing the bias Voltage applied to the diode ($\sim 200 V \rightarrow \sim 700 V$)
- Reduction of gain and collected charge
 - Charge collected up to 30fC (Gain \sim 50) before irradiation to 1fC (gain 2-3) after a fluence of 6E15 Neq/cm²
 - (Neq: equivalent 1 MeV neutrons on cm²)
- Increased time resolution
 - Time res. of 25ps to 60ps after a fluence of 6E15 Neq/cm²



Radiation damage model

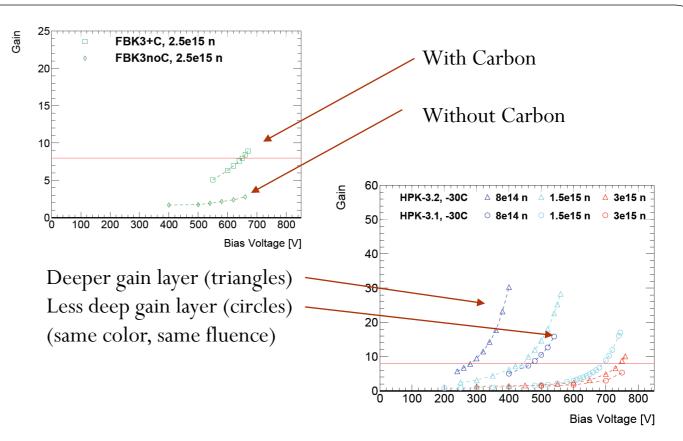
- Radiation damage for LGADs can be parameterized
 - $N_A(\phi) = g_{eff}\phi + N_A(\phi=0)e^{-c\phi}$
- Acceptor creation: $g_{eff}\phi$
 - By creation of deep traps
- Initial acceptor removal mechanism: $N_A(\phi=0)e^{-c\phi}$
 - Reduction of doping concentration in the multiplication layer
 → reduction of gain
 - C-factor (acceptor removal constant) depending on detector type
- NOTE: this does NOT follow NIEL scaling well for fluence

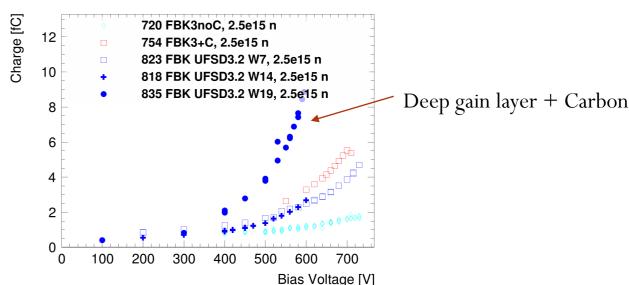


Boron

Radiation creates interstitial defects that inactivate the Boron: Si_i + B_s → Si_s + B_i B_i might interact with Oxigen, creating a donor state

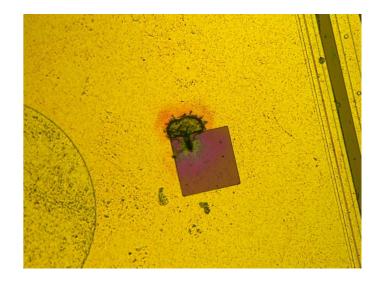
NIEL violation (old-ish data)

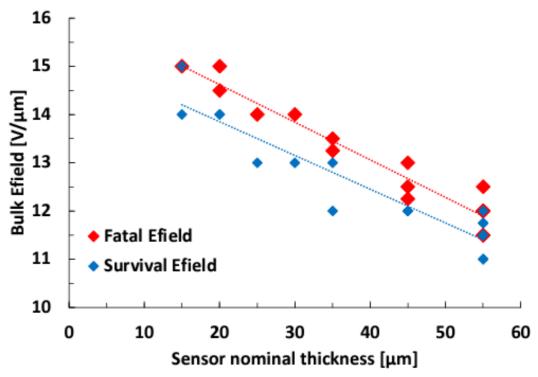

- Acceptor removal ratio cp/cn
 - Dependence on the proton energy seems to be sensor specific
 - Does not scale with NIEL, larger than NIEL factor.
 Damage can be > 2 than the expected NIEL fluence
- Need to take into account the energy distribution of the damaging particles in the fluence calculation
- Some new results: https://indico.cern.ch/event/1334364/contributions/5672075/



Radiation hard LGAD design

Radiation hardness of LGADs can be increased by:

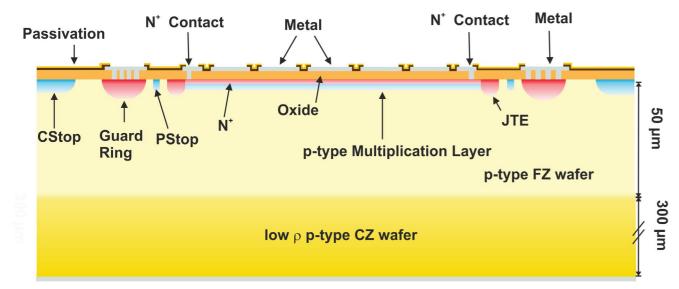

- Thin but highly doped gain layer
- Addition of Carbon
 - Carbon is electrically inactive (no effect preirradiation), catches interstitials instead of Boron, reduces acceptor removal after irradiation
- Deeper gain layer
 - High field for larger volume
 - Allows for better recovery of the gain from increased bias voltage after radiation damage
- The combination of all techniques (by FBK) allowed to produce a sensor with gain ~20 at 2.5E15 Neq
- Resources
 - https://iopscience.iop.org/article/10.1088/1742-6596/2374/1/012173/meta
 - https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10003
 - https://www.sciencedirect.com/science/article/pii/S0168900218317741
 - https://doi.org/10.1088/1748-0221/15/04/T04008
 - https://doi.org/10.1016/j.nima.2018.08.040

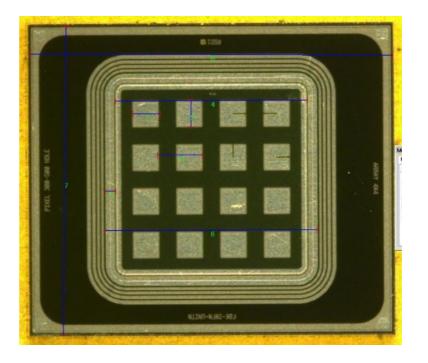


Another issue: SEB

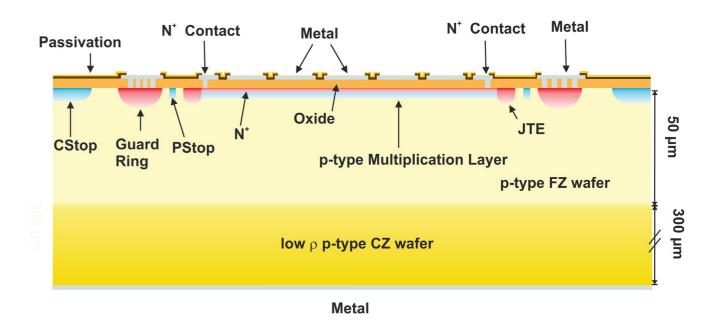
- Single Event Burnout can happen for highly irradiated devices
- A single highly ionizing particle underdepletes the device and causes a catastrophic breakdown
 - Device is non recoverable afterwards
- Thinner sensors seem to have a higher fatal Electric field
- See https://indico.cern.ch/event/1334364/contributions/5672087/
- (Should not be an issue for ePIC)

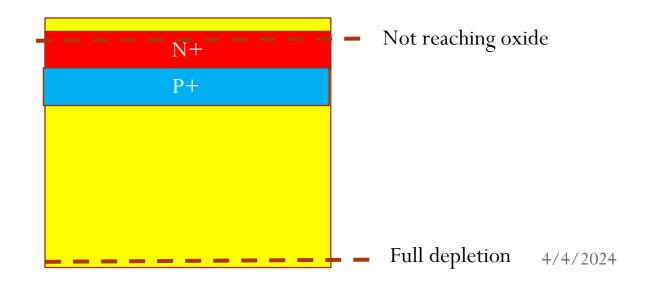
Radiation damage on AC-LGADs


AC-LGADs

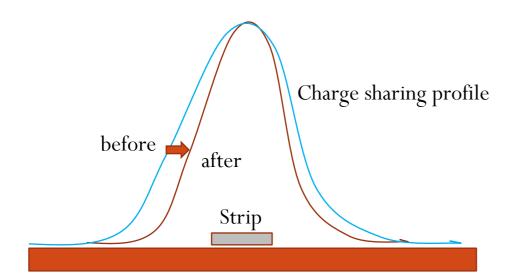


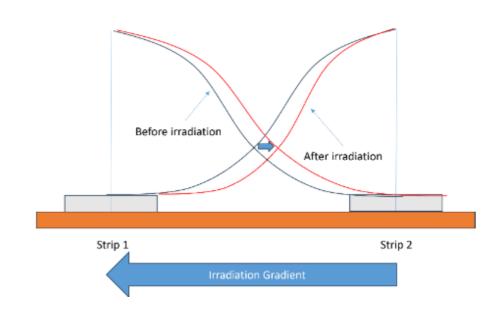
- Most advanced high granularity LGADs are AC coupled **LGADs**
 - Finer segmentation and easier implantation process
 - (UCSC US patent N. 9,613,993 B2, granted Apr. 4, 2017)
- Continuous sheets of multiplication layer and N+ layer
 - 100% fill factor
- N+ layer is **resistive** and grounded through side connections
- Readout pads are AC-coupled
 - Oxide insulator layer between N+ and pads


Metal


- The response of the sensors can be tuned by modifying several parameters
 - Pad geometry and dimension
 - Pad pitch
 - N+ layer resistivity
 - Oxide thickness

Effect of irradiation on AC-LGADs

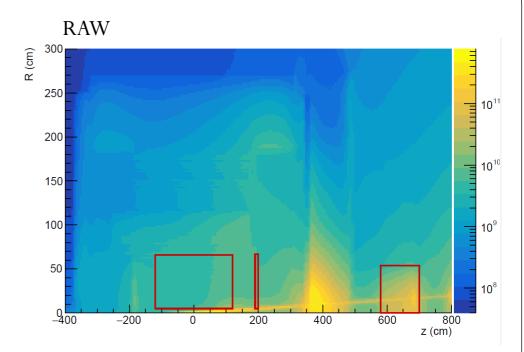

- The gain layer will have more or less the same behavior of standard LGAD devices
- The N+ can have some unexpected effects though
 - Normally is highly doped and conductive so it's not affected by radiation damage
 - We don't know well the effects of acceptor removal to N-type, might even be higher than in P-type
- In AC-LGADs the N+ has low doping to have high resistivity necessary for charge sharing
 - Cannot be too low or depletion will reach the oxide and cause premature breakdown
 - Could be affected even by low irradiation
- If the N doping drops it could change the resistivity and the behavior of the sensors
 - Plus, it could lead to premature breakdown due to low doping in the N+

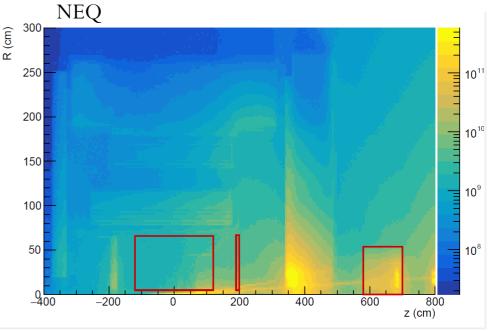


Effect of irradiation on AC-LGADs

- The change in N+ resistivity can affect the charge sharing profile around the strip/pad
- If the irradiation is not homogeneous (especially in the end-cap) it could change the centroid of the charge sharing between pads/strips and skew the reconstruction algorithm
- This could be corrected with a correction per fluence/position, but would need a very precise model!
 - Affects position resolution and might also influence time resolution since the delays are calculated per position

Radiation damage at ePIC


RAW


Barrel average: 5.4e+09 | max: 5.9+10 | min: 3.4+09

End-cap average: 1.3e+10 | max: 1.6e+11 | min: 5.1e+09

FF average: 3.9e+10 | max: 1.8e+11 | min: 3.3+09

- NEQ (not correct for LGADs gain layer)
 Barrel average: 3.6e+09 | max: 1.3e+11 | min: 1.1+09
 End-cap average: 1.2e+10 | max: 8.4e+10 | min: 3.2e+09
 FF average: 4.5e+10 | max: 4.2e+11 | min: 2.7e+09
- Safe to assume MAX damage is <1e+12, almost negligible for LGADs gain layer (effects start at >1e+13)

Irradiation campaigns

Irradiations planned

- Original plan: irradiation at LANSCE (Los Alamos) with 800 MeV protons
 - 7e12 Neq to 2e14Neq
 - Try graded irradiation using beam edge and multiple foils
- However, Last summer the LANSCE accelerator encountered a problem
- Moved the sensors to irradiated to FNAL ITA (400MeV protons)
 - Plans for last week irradiation but due to setbacks in the beam is now planned end of April, beginning of May
 - Not sure if graded irradiation is possible
- Fluences 1E13 to 2E14 Neq
 - Plus higher fluences for some old LGADs for facility characterization

	Α	В	С	D	E	F	G	н	I I	J
1 Producer		ID	Sensor	Production	Wafer	Туре	Thickness	Geometry	Fluences	Simplified
2	HPK	•	HPK 3.1	HGTD1		DC-LGAD		1.3x1.3 mm single pad	8e14 Neq, 1.5e15 Neq, 2.5e15 Neq	
	HPK		HPK 3.2	HGTD1		DC-LGAD		1.3x1.3 mm single pad	8e14 Neq, 1.5e15 Neq, 2.5e15 Neq	
5										
6	FBK					AC-LGAD		0.5x2	1.78E+14	
7	FBK					AC-LGAD		0.5x2	9.26E+13	
	FBK					AC-LGAD		0.5x2	1.78E+14	
8 9	FBK					AC-LGAD		0.5x2	9.26E+13	1.00E+
10	HPK	?			?	?	?	0.5x1? or 0.5x0.5?	7.13E+12	1.00E+
1	HPK	?			?	?	?	0.5x1? or 0.5x0.5?	9.26E+13	
2	HPK	?			?	?	?	0.5x1? or 0.5x0.5?	9.26E+13 1.78E+14	
3		?			?	?	?			
4	HPK	?			?	?	?	0.5x1? or 0.5x0.5?	7.13E+12	
5	HPK				?			0.5x1? or 0.5x0.5?	9.26E+13	
6	HPK	?			?	?	?	0.5x1? or 0.5x0.5?	1.78E+14	
7	HPK	?						0.5x1? or 0.5x0.5?	7.13E+12	
	HPK	?			?	?	?	0.5x1? or 0.5x0.5?	9.26E+13	
18	HPK	?			?	?	?	0.5x1? or 0.5x0.5?	1.78E+14	2.00E-
20	HPK	?			?	?	?	0.5x2	Graded 4e14 Neg to 2e14 Neg, parallel to strip	
1	HPK	?			?	?	?	0.5x2	Graded 4e14 Neg to 2e14 Neg, parallel to strip	
2	HPK	?			?	?	?	0.5x2	Graded 4e14 Neq to 2e14 Neq, parallel to strip	
3										
4	BNL		12		W3074, 2,1	AC-strips	20um	0.5x0.5 strips (500-50)	9.26E+13	1.00E-
5	BNL		15		W3074, 2,4	AC-strips	20um	0.5x1 strips (500-50)	1.78E+14	2.00E-
26	BNL		12		W3074, 1,7	AC-strips	20um	0.5x0.5 strips (500-100) 9.		1.00E-
7	BNL		15		W3074, 1,1	AC-strips	20um	0.5x1 strips (500-100)		2.00E-
8	BNL		24		W3072, 1,2	AC-strips	20um	0.5x1 strips (500-100)	9.26E+13	1.00E-
9	BNL		25		W3072, 2,1	AC-strips	20um	0.5x1 strips (500-200) 1.		2.00E-
0	BNL		18		W3052, 2,1	AC-strips	50um	0.5x0.5 strips (500-50)	9.26E+13	1.00E-
1	BNL		19		W3052, 2,1	AC-strips	50um	0.5x1 strips (500-100) 1.		2.00E
2	BNL		31		W3075, 1,2	AC-strips	20um	0.5x1 strips (500-100) 9.3		1.00E
3	BNL		30		W3075, 1,2	AC-strips	20um	0.5x0.5 strips (500-100)	7.13E+12	1.00E-
4	BNL		17		W3052, 2,2	AC-strips	50um	0.5x0.5 strips (500-50)	7.13E+12	1.00E-
35	BNL		16		W3074, 2,3	AC-strips	20um	0.5x0.5 strips (500-50)	7.13E+12	1.00E-
86										

Irradiations planned

- Irradiation at IJS
 - 1 MeV neutrons
- Fluences
 - 1E12, 1E13, 1E14 Neq
- Plus higher fluence for general interest of irradiation on AC-LGADs
 - 5E14, 1E15 Neq

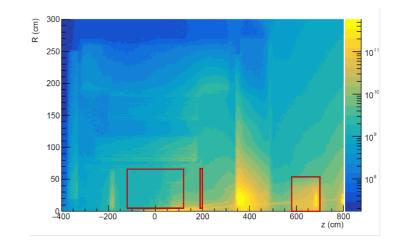
SCIPP HPK ID	Geometry	wafer	cize	doping	(pF/mm2)	thlokness	lenght (mm)	pitch (um)	width (um)	Tested laser	Test IV	Ask for more? #	Fluence (J 81)
HPK1	Strip	W02		E	240	50		5 50	0 5	60 X	×	- 1	1.00E+1
HPK3	Strip	W05		E	600			5 50		0 X	K		1.00E+
HPK4	Strip	WOB		C	600	50	1	5 50	D 5	0 X	K		
HPK5	Strip	W09		E	600	20		5 50	D 5	0			
HPK6	Strip	W11	12	C	600	20	1	5 50	D 5	D	72		
HPK7	Strip	W02		E	240			5 50		0			5.00E+
HPKB	Strip	W04		C	240			5 50		D X	X		
HPK9	Strip	VV05		E	600			5 50		0			1.00E+
HPK10	Strip	WOB		C	600			5 50					
HPK11	Strip	W09		E	600			5 50					
HPK12	Strip	W11		C	600	20		5 50	0 10	0			
HPK13	Strip	W02		E	240	50	9	50	0 5	0 X	×		1.00E+
HPK14	Strip	W04			240					0			
HPK15	Strip	W05		E	600					0			1.00E+1
HPK16	Strip	WOB		C	600					D Nalu board #1			
HPK17	Strip	W09		E	600					io reau coard #1	1		
HPK17 HPK18		W11		C	600					10			
TIPLIO	Strip	9911		u	600	20	11	50					
HPK19	Strip	W02		E	240	50	91	50	0 40	10			1.00E+
HPK20	Strip	W02		C	240					10			TUBE
HPK20	Strip	W05		E	600					0 X	~		1.00E+1
HPK21 HPK22	_	WOS		C	600				_	O X	X		
HPK22 HPK23	Strip	WOS		E							A		
HPK23 HPK24				C	600								
HCD49	Strip	W11		L.	600	20	10	50	D 10				
HPK25	Strip	W02		E	. 240					0			5.00E+
HPK26	Strip	W04		C	240					0			
HPK27	Strip	W05		E	600					0 X	×		1.00E+1
HPK28	Strip	WOB		C	600					0 X	X		
HPK29	Strip	W09		E	600					0 X	X	1	
HPK30	Strip	W11		C	600	20	20	50	5	D			
HPK31	Strip	W02		E	240					0		- 1	1.00E+
HPK32	Strip	W04		C	240								
HPK33	Strip	VV05		E	600					10			1.00E+1
HPK34	Strip	WOB		C	600								
HPK35	Strip	W09		E	600					0 X	X	- 1	
HPK36	Strip	W11		С	600	20	20	50	0 10	0			
HPK37	Pixel	W02	414	E	240	50	150	50					1612, 1613, 161
HPK38	Pixel	W02	4x4	C	240								1E12, 1E13, 1E
HPK39	Pixel	W06	4x4	E	600								5E14, 1E15
HPK40	Pixel	WOB	414	C	600								1E12, 1E13, 1E
HPK41	Pixel	WOS	414	E	600								1E12, 1E13, 1E
HPK41				C	600								5E14, 1E15
TITTINE	Pixel	W11	4x4	0	600				U				DE14, TE15
UDWAD	Flori		de la	E									
HPK43	Pixel	W02	4x4	E	240								5E14, 1E15
HPK44	Pixel	W04	4x4	C	240								5E14, 1E15
HPK45	Pixel	W05	414	E	600								1E12, 1E13, 1E
HPK46	Pixel	WOB	4104	C	600								
HPK47	Pixel	W09	4x4	E	600	20	300	50					1e12, 5e14, 1e1

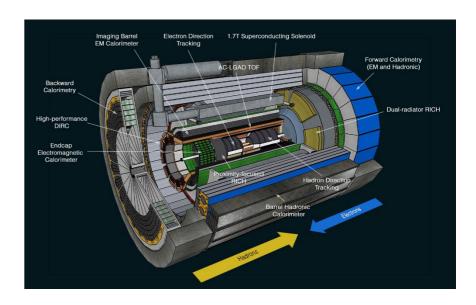
Other irradiations

- Plans for irradiation at UC Davis (high energy neutrons, protons, ions) in summer
- TBD plans for irradiation at UC Berkely (high energy neutrons, protons, ions)

Sensors	Facility	Time	Particles	Fluences (Neq)	Expected back
HPK Pixels, strips BNL strips FBK strips	FNAL ITA	End of April	400 MeV Protons	1E13, 1E14, 2E14	?
HPK Pixels, strips	Triga Reactor	Shipped, <1month	1MeV neutrons	1E12, 1E13, 1E14, 5E14, 1E15	~3-4 months
TBD	UC Davis	Summer	Neutrons, protons, ions	TDB	?
TBD	LBNL	TBD	Neutrons, protons, ions	TDB	?

Conclusions


Conclusions


- Radiation damage at ePIC is not a concern regarding acceptor removal effect in the gain layer
 - However, need to check carefully the effect of low energy particles flux
- It might affect AC-LGADs devices in other ways due to the resistive N+
 - Premature breakdown or change in charge sharing mechanism, especially in end-cap and FF with fluence variation across the device
 - It's critical to prove it's not an issue at ePIC
 - Also check SEB in AC-LGADs
- Irradiation at FNAL ITA (protons) and Triga reactor (neutrons) ongoing
 - Hopefully, sensors will be back by summer
 - Plans for irradiations also at UC Davis and LBNL

Many thanks to the SCIPP group students and technicians!

Thanks to FBK, HPK, BNL to have provided sensors for this study

This work was supported by the United States Department of Energy, grant DE-FG02-04ER41286

This work was partially performed within the CERN RD50 collaboration.

Part of this work has been financed by the European Union's Horizon 2020 Research and Innovation funding program, under Grant Agreement no. 654168 (AIDA-2020) and Grant Agreement no. 669529 (ERC UFSD669529), and by the Italian Ministero degli Affari Esteri and INFN Gruppo V.

This work was supported by the United States Department of Energy, grant DE-FG02-04ER41286. CACTUS DJ-LGAD SBIR

Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

The group from USP acknowledges support from FAPESP (grant 2020/04867-2) and CAPES.